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Yang’s notes 1 DEFINITION

1 Definition

Figure 1: Basic survival analysis concept map

1.1 Censoring
An important prosperity of survival data is the occurrence of censored events. Those data censored similar
as missing values may cause issues when tests were applied on mean or median, because we probably have
no chance to calculate those quantities. E.g. If we have more than half participants censored, how we can
get median value?

It is also wrong to just delete all censored data (missing value). Because that will produce biased results
too! Therefore, we can see why survival analysis differs from other statistical analysis.

Definition:

Censoring (general): The survival time of an individual is said to be censored if the end-point of interest has
not been observed for that individual (Collett, 2003).

Reasons for censoring include:

1. lost to follow-up (e.g., patient moved away).

2. withdraws from a study.

3. individual is still alive at study termination (e.g., in a study that follows patients for 5 years, any
patient who lives longer than 5 years is right-censored).
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1.2 Truncation Yang’s notes 2 PROBABILITY

4. individual’s name is recorded in a death registry, but the exact time of death cannot be determined.

Types

1. Right censoring: A survival time is right censored if the individual is known to be alive at a specific
time, say c, but survival status is not known for times t > c. Here, c is known as the censoring time.

2. Left censoring: An individual had event by a certain time, but the event time is not observed. Example:
Event of interest is first menstrual period and study subject who enrolls at 10 years old has already
experienced event.

3. Interval censoring: Observations are made at distinct times, with gaps in between. Example: Individ-
uals contacted yearly for time-to-disease(e.g., HIV infected patients followed-up for time-to-AIDS).

Non-informative censoring

Censoring in survival analysis is non-informative if “knowledge of a censoring time for an individual provides
no further information about the person’s likelihood of survival at a future time had the individual continued
on the study.” (Klein and Moeschberg, 1997)

1.2 Truncation
Definition:

A data set of observations are truncated if it is incomplete due to a selection process inherent in the study
design (Hosmer etal.). In contrast to censoring, the truncated cases are not observed at all(e.g. The selection
process is typically part of the study design). Methods good for censoring are wrong for truncation which
requires other approaches.

Types

1. Right truncation: occurs when the entire study population has already experienced the event of interest.
Commonly length biased sampling and typically occurs when only individuals who have experienced
an event are selected.

2. Left truncation: occurs when the subjects have been at risk before entering the study. Commonly
delayed entry where there is an unknown delay between the start time and study entry time.

2 Probability
All proof will provided in later chapters.

2.1 Survival time T
1. T: Survival time (event happened time) for an individual is represented by the random variable T. Most
parametric models assume T is continuous. Lower case letters refer to real numbers (e.g. t = 5 years).

𝑇 ∈ [0, +∞)

2.2 𝐹(𝑡)
2. F: The Cumulative Distribution Function of T (event time).

lim
𝑇 →+∞

𝐹(𝑇 ) = 1

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = ∫
𝑡

0
𝑓(𝑢) 𝑑𝑢
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2.3 𝑆(𝑡)
3. S: The survival function.

𝑆(𝑡) = 𝑃(𝑇 > 𝑡), 𝑜𝑟 𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡); 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑓𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑏𝑜𝑡ℎ 𝑎𝑟𝑒 𝑠𝑎𝑚𝑒.
𝑆(𝑡) = 1 − 𝐹(𝑡)

2.4 𝑓(𝑡)
4. 𝑓(𝑡): Density Distribution Function of T

𝑓(𝑡) = 𝑑
𝑑𝑡𝐹(𝑇 )𝑇 =𝑡 = lim

ℎ→0
𝑃(𝑡 ≤ 𝑇 < 𝑡 + ℎ)

ℎ = 𝑑
𝑑𝑡( 1 − 𝑆(𝑇 ) )𝑇 =𝑡 = − 𝑑

𝑑𝑡𝑆(𝑇 )𝑇 =𝑡

2.5 ℎ(𝑡)
5. Hazard Function

ℎ(𝑡) = 𝑓(𝑡)
𝑆(𝑡) = −𝑙𝑜𝑔′(𝑆(𝑡))

2.6 𝐻(𝑡)
6. Cumulative Hazard Function

𝐻(𝑡) =
𝑡

∫
0

ℎ(𝑢) 𝑑𝑢 = −𝑙𝑜𝑔(𝑆(𝑡))

3 Kaplan Meier
The Kaplan Meier (a.k.a. product limit) method provides a dynamic estimate of survival S(t) that
makes no parametric model assumptions.

3.1 No censoring

̂𝑆(𝑡) = 1
𝑛

𝑛
∑
𝑖=1

𝐼(𝑇𝑖 > 𝑡)

3.2 Censoring
When censoring is present, the KM method develops ̂𝑆(𝑡) from the conditional probabilities:

If no tied times

𝑃 (𝑇 > 𝑡(𝑗) + Δ𝑡 | 𝑇 > 𝑡(𝑗)) = 1 − 𝑃(𝑇 ≤ 𝑡(𝑗) + Δ𝑡 | 𝑇 > 𝑡(𝑗)) = 1 − 𝑑𝑗
𝑛𝑗

𝑑𝑗 = the number of individuals who die at time 𝑡(𝑗)

𝑛𝑗 = the number of individuals who are alive just before time 𝑡(𝑗)

If uncensored times are tied, then we assume the deaths occurred simultaneously at 𝑡(𝑗)
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If censored and uncensored times are tied, then for the KM curve we assume the censored observations
lived a little beyond 𝑡(𝑗) contributing to the risk set.

3.3 Estimator
Kaplan-Meier estimate of 𝑆(𝑡)

̂𝑆(𝑡) =
⎧{
⎨{⎩

∏
𝑡(𝑗)≤𝑡

𝑛𝑗−𝑑𝑗
𝑛𝑗

if 𝑡 ≥ 𝑡(1)

1 if 0 ≤ 𝑡 ≤ 𝑡(1)

3.4 Assumptions
1. The survival data represents a random sample from the target population.

2. The censoring process is non-informative.

Example 2.1: Kaplan-Meier

Question 1: Severe viral hepatitis patients were entered into a 16 week study of the effects of steroid
therapy. Patients were randomized to receive steroid or a control (standard of care) therapy. The survival
time in weeks of the 14 patients on the steroid arm are given below.

Survival times: 1, 1, 1, 1+, 4+, 5, 7, 8, 10, 10+, 12+, 16+, 16+, 16+

Note: A “+” indicates that the patient was still alive (censored).
library(survival)

tab1 <- round(data.frame(t = c(1, 5, 7, 8, 10), n = c(14, 9,
8, 7, 6), d = c(3, 1, 1, 1, 1), f = c((14 - 3)/14, (9 - 1)/9,
(8 - 1)/8, (7 - 1)/7, (6 - 1)/6), s = c((14 - 3)/14, ((14 -
3)/14) * (9 - 1)/9, ((14 - 3)/14) * ((9 - 1)/9) * ((8 - 1)/8),
((14 - 3)/14) * ((9 - 1)/9) * ((8 - 1)/8) * ((7 - 1)/7),
((14 - 3)/14) * ((9 - 1)/9) * ((8 - 1)/8) * ((7 - 1)/7) *

((6 - 1)/6))), 3)

kable(tab1, row.names = FALSE, col.names = c("$t_i$", "$n_i$",
"$d_i$", "$\\frac{n_i - d_i}{n_i}$", "$\\hat{S}_{(t_i)}$"),
escape = FALSE)

𝑡𝑖 𝑛𝑖 𝑑𝑖
𝑛𝑖−𝑑𝑖

𝑛𝑖
̂𝑆(𝑡𝑖)

1 14 3 0.786 0.786
5 9 1 0.889 0.698
7 8 1 0.875 0.611
8 7 1 0.857 0.524
10 6 1 0.833 0.437

dat <- data.frame(time = c(1, 1, 1, 1, 4, 5, 7, 8, 10, 10, 12,
16, 16, 16), censor = c(1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0,
0, 0, 0))

myfit <- survfit(Surv(time, censor) ~ 1, conf.type = "log-log",
error = "greenwood", data = dat)

plot(myfit, main = "Kaplan-Meier with 95% CI", sub = "Greenwood formula with S")

7
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3.5 Life table
Unlike the KM estimator, the life table (actuarial) method was developed for large retrospective studies
where numbers of those alive at the start of an interval, and dying and censored in the interval, are available,
but not individual death times.

Notation

1. Let ̃𝑡(1) < ... < ̃𝑡(𝑛) be time-points (not necessarily equally spaced, e.g., 1, 2, 3, …, 10 years).

2. Let 𝑛𝑖 be the number alive at the beginning of interval with right endpoint ̃𝑡(𝑖).

3. Let 𝑐𝑖 be the number of censored observations in interval with right endpoint ̃𝑡(𝑖).

4. Then 𝑛′
𝑖 = 𝑛𝑖 − 𝑐𝑖

2 is the effective sample size, assuming censoring uniform distributed between the
interval.

5. ̃𝑝(𝑖) = 𝑛′
𝑖−𝑑𝑖
𝑛′

𝑖
is the estimated probability of surviving the interval.

̂𝑆𝑎 =
𝑘

∏
𝑖=1

̃𝑝(𝑖)

3.6 Probability
Suppose we divide the time in small intervals, and assuming no censoring (e.g. all individuals die).

8
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Notation

1. 𝑛𝑖: the number at risk at the interval start from time point of 𝑖.
2. 𝑑𝑖: the number who die in the interval start from time point of 𝑖.
3. 𝑠𝑖 = 𝑛𝑖 − 𝑑𝑖: is the number who survive the interval start from time point of 𝑖.
4. ℎ𝑖 = 𝑑𝑖

𝑛𝑖
: is the probability of dying in the interval start from time point of 𝑖.

Distribution

The distribution of survive (𝑛𝑖 − 𝑑𝑖) is Binomial with each Bernoulli event probability (1 - ℎ𝑖), and trials
𝑛𝑖, assuming each death is independent.

For the Binomial distribution:

𝐸[𝑛𝑖 − 𝑑𝑖] = 𝑛𝑖(1 − ℎ𝑖)

𝐸[𝑛𝑖 − 𝑑𝑖
𝑛𝑖

] = 1 − ℎ𝑖

𝑉 𝑎𝑟[𝑛𝑖 − 𝑑𝑖] = 𝑛𝑖(1 − ℎ𝑖)ℎ𝑖

𝑉 𝑎𝑟[𝑛𝑖 − 𝑑𝑖
𝑛𝑖

] = (1 − ℎ𝑖)ℎ𝑖
𝑛𝑖

Therefore, this gives us a way to estimate the mean and variance for that interval.

̂𝑆(𝑡) =
⎧{
⎨{⎩

1 if 𝑡 < 𝑡(1)
𝑘
∏
𝑖=1

𝑛𝑖−𝑑𝑖
𝑛𝑖

if 𝑡 ≥ 𝑡(1)

3.7 Confidence interval
Now, for ̂𝑆(𝑡) we have a point estimation, next we need a estimation of the variance and standard error for
confidence interval.

1. Greenwood’s formula: By the delta method with transformation of 𝐿𝑛( ̂𝑆(𝑡)), and assuming i.i.d
(𝑡𝑖 ≠ 𝑡𝑗, 𝑐𝑜𝑣(𝑛𝑖 − 𝑑𝑖, 𝑛𝑗 − 𝑑𝑗) = 0).

̂𝑉 𝑎𝑟[ ̂𝑆(𝑡)] = [ ̂𝑆(𝑡)]2 ∑
𝑡(𝑖)≤𝑡

𝑑𝑖
𝑛𝑖(𝑛𝑖 − 𝑑𝑖)

9



3.7 Confidence interval Yang’s notes 3 KAPLAN MEIER

Figure 2: Kaplan Meier with Greenwood’s 95%CI

Notes, The confidence intervals are:

1. Calculated based on log-transformation.

2. Truncated at 1 and 0.

3. Point-wise and not simultaneous.

Because, The log-survival (𝐿𝑛( ̂𝑆(𝑡))) has range (−∞, 0]. However, ideally, since the CI is based on ̂𝑆(𝑡) ±
1.96 ∗ 𝑠.𝑒., the range should be (−∞, +∞), the same as a normal random variable. To achieve this, use the
transformation 𝑙𝑜𝑔(−𝑙𝑜𝑔()) transformation

2. log-log formula

By this transformation, 𝑙𝑜𝑔𝑙𝑜𝑔(𝑠) = 𝑙𝑜𝑔(−𝑙𝑜𝑔( ̂𝑆(𝑡))) ∈ (−∞, +∞), we can have a better CI estimation.

𝑉 𝑎𝑟[𝑙𝑜𝑔𝑙𝑜𝑔(𝑠)] = 1
[𝑙𝑛( ̂𝑆(𝑡))]

2 ∑
𝑡(𝑖)≤𝑡

𝑑𝑖
𝑛𝑖(𝑛𝑖 − 𝑑𝑖)

10
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Figure 3: Kaplan Meier with log-log 95%CI

Here, the log-log method provides narrower interval that does not hit the upper bound as much.

Summary:

1. Greenwood’s formula actually is an application of delta method to getting variance from a exponential
transformation.

2. 𝑠.𝑒. =
√

𝑉 𝑎𝑟, because here is the estimation of a parameter from itself variance different to the s.e.
estimation of average from i.i.d samples.

3.8 Codes of SAS
The “(S)” stands for estimated survival function.

Figure 4: Codes of SAS, KM estimate
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Figure 5: KM estimate results

3.9 CI band
Simultaneous vs. point-wise CI

The CI curves of ̂𝑆(𝑡) ± 1.96 ∗ 𝑠.𝑒.: just reflect a collection of CI’s constructed at each event (death) time. No
multiple comparison adjustment. The overall coverage across all the event times is below 95%. Simultaneous
95% CI’s are constructed in such a way that the overall type I error is controlled at 5%. Point-wise is
narrower than simultaneous CI

Simultaneous confidence bands

A 95% simultaneous confidence band for death time 𝑡0 is a band constructed in such a way that, if the band
was repeatedly constructed, 95% of the time it would contain the ENTIRE survival function up to time 𝑡0.

Formula

1. By central limit theorem, for any t,
√𝑛( ̂𝐹 (𝑡) − 𝐹(𝑡)) → 𝑁(0, 𝜎2).

2. Also, under certain conditions 𝑤(𝑡) converges to a Wiener process.

𝑤(𝑡) = √𝑛(
̂𝐹 (𝑡) − 𝐹(𝑡)
1 − ̂𝐹 (𝑡)

)

3. Wiener processes (a.k.a. Brownian motion) are common in finance and other applications; theory can
be used to construct the interval.
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Figure 6: Simultaneous confidence bands

Notes:

1. The bands are wider than the point-wise confidence limits.

2. In R, the package “km.ci” can be used to construct simultaneous confidence bands.

4 Hazard
Density 𝑓(𝑡) is needed to measure the event possibility:

𝑓(𝑡) = lim
Δ𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡)
Δ𝑡

Hazard Function

Hazard ℎ(𝑡) is needed to measure the instantaneous death rate conditional on current risk population:

ℎ(𝑡) = lim
Δ𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡|𝑇 ≥ 𝑡)
Δ𝑡 = lim

Δ𝑡→0
𝑃(𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡)

𝑃(𝑇 ≥ 𝑡) ∗ 1
Δ𝑡 = 𝑓(𝑡)

𝑆(𝑡)

∵ 𝑓(𝑡)
𝑆(𝑡) = 𝐹 ′(𝑡)

𝑆(𝑡) = [1 − 𝑆(𝑡)]′
𝑆(𝑡) = −𝑆′(𝑡)

𝑆(𝑡) = −𝑙𝑜𝑔′(𝑆(𝑡))

∴ℎ(𝑡) = −𝑙𝑜𝑔′(𝑆(𝑡))

Note: If survival time T is exponential distribution, ℎ(𝑡) is constant to 𝜆
Cumulative Hazard Function

𝐻(𝑡) =
𝑡

∫
0

ℎ(𝑢) 𝑑𝑢 = −𝑙𝑜𝑔(𝑆(𝑡))

∵𝐻(𝑡) =
𝑡

∫
0

ℎ(𝑢) 𝑑𝑢 =

13
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=
𝑡

∫
0

−𝑙𝑜𝑔′(𝑆(𝑢)) 𝑑𝑢

= −
𝑡

∫
0

𝑙𝑜𝑔′(𝑆(𝑢)) 𝑑𝑢

= −𝑙𝑜𝑔(𝑆(𝑢))∣
𝑡

0

= −𝑙𝑜𝑔(𝑆(𝑡)) − (−𝑙𝑜𝑔(𝑆(0)))
= −𝑙𝑜𝑔(𝑆(𝑡)) − (−𝑙𝑜𝑔(1))
= −𝑙𝑜𝑔(𝑆(𝑡))

4.1 Nelson Aalen estimation
Estimating the hazard function is analogous to estimating a density function requiring lots of data. But the
cumulative hazard function can be estimated, even with small data sets, and is useful.

Nelson Aalen cumulative hazard estimate

At death time 𝑡(𝑖), the hazard for those alive is estimated by 𝑑𝑖
𝑛𝑖
, so the cumulative hazard “jumps up” at

those times.

�̃�(𝑡) = ∑
𝑡(𝑖)≤𝑡

𝑑𝑖
𝑛𝑖

Nelson example

Toy Example with out of battery time: 1, 2, 2, 4+, 4, 5

Table 3.1

Time t 0 1 2 4 5
n 6 6 5 3 1
d 0 1 2 1 1
d/n 0 1/6 2/5 1/3 1/1
�̃�(𝑡) 0 1/6 1/6 + 2/5 1/6 + 2/5 + 1/3 1/6 + 2/5 + 1/3 + 1/1

Note: the cumulative hazard can exceed 1.

14
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Figure 7: Simultaneous confidence bands

Variance of Nelson-Aalen Estimator

𝑉 𝑎𝑟(�̃�(𝑡)) = ∑
𝑡(𝑖)≤𝑡

𝑑𝑖
𝑛2

𝑖

4.2 Kaplan Meier estimation
Because, previously, we already proof that:

�̂�(𝑡) =
𝑡

∫
0

ℎ(𝑢) 𝑑𝑢 = −𝑙𝑜𝑔(𝑆(𝑡))

Then, due to the ability of 𝑆(𝑡) estimation from Kaplan Meier, we have another way to get cumulative
hazard 𝐻(𝑡).

�̂�(𝑡) = −𝑙𝑜𝑔(𝑆(𝑡)) = −𝑙𝑜𝑔( ∏
𝑡(𝑗)≤𝑡

𝑛𝑗 − 𝑑𝑗
𝑛𝑗

) = − ∑
𝑡(𝑖)≤𝑡

𝑙𝑜𝑔(𝑛𝑖 − 𝑑𝑖
𝑛𝑖

)

4.3 Nelson Aalen VS Kaplan Meier estimation
1. Kaplan Meier is the standard graphic used for the survival function.

2. The Nelson-Aalen is the standard graphic used for the cumulative hazard.

3. Nelson-Aalen is more “optimistic” (𝐻(𝑁𝑒𝑙𝑠𝑜𝑛 𝐴𝑎𝑙𝑒𝑛) ≤ 𝐻(𝐾𝑎𝑝𝑙𝑎𝑛 𝑀𝑒𝑖𝑒𝑟) or 𝑆(𝑁𝑒𝑙𝑠𝑜𝑛 𝐴𝑎𝑙𝑒𝑛) ≥
𝑆(𝐾𝑎𝑝𝑙𝑎𝑛 𝑀𝑒𝑖𝑒𝑟)).

Proof

∵𝑆(𝑁𝑒𝑙𝑠𝑜𝑛 𝐴𝑎𝑙𝑒𝑛) = 𝑒−�̃�(𝑡)

∵𝑒−�̃�(𝑡) = 𝑒
(− ∑

𝑡(𝑖)≤𝑡

𝑑𝑖
𝑛𝑖

)
= ∏

𝑡(𝑗)≤𝑡
𝑒− 𝑑𝑖

𝑛𝑖

15



4.3 Nelson Aalen VS Kaplan Meier estimationYang’s notes 4 HAZARD

∵𝑆(𝐾𝑎𝑝𝑙𝑎𝑛 𝑀𝑒𝑖𝑒𝑟) = ∏
𝑡(𝑗)≤𝑡

𝑛𝑗 − 𝑑𝑗
𝑛𝑗

= ∏
𝑡(𝑗)≤𝑡

1 − 𝑑𝑗
𝑛𝑗

From the The Taylor series expansion for the function 𝑒𝑥 is given by

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2 + 𝑥3

6 + ⋯ = ∑
𝑛≥0

𝑥𝑛

𝑛!

We know that, actually, 𝑆(𝐾𝑎𝑝𝑙𝑎𝑛 𝑀𝑒𝑖𝑒𝑟) is the first two terms of Taylor series expansion of 𝑆(𝑁𝑒𝑙𝑠𝑜𝑛 𝐴𝑎𝑙𝑒𝑛)

∴𝑆(𝑁𝑒𝑙𝑠𝑜𝑛 𝐴𝑎𝑙𝑒𝑛) ≥ 𝑆(𝐾𝑎𝑝𝑙𝑎𝑛 𝑀𝑒𝑖𝑒𝑟)

Example 2.1: Kaplan-Meier

Figure 8: Nelson-Aalen is more optimistic

Figure 9: SAS codes of Nelson-Aalen

16



5.1 The log-rank test Yang’s notes 5 NON-PARAMETRIC MODEL

Notes

1. logsurv: plot the cumulative hazard function (I already proofed above).

2. nelson: get the Nelson-Aalen estimate.

5 Non-parametric model
People love statistical test, because we need a important quantity even always around critics, P-value!

Non-parametric models (e.g., product limit estimator for survival) make no distributional assumptions (e.g.,
about the survival times, or the hazard function).

5.1 The log-rank test
The p-values reported on Kaplan Meier plots are typically based on the log-rank test.

Assumptions

1. The survival data represents a random sample from the target population.

2. The censoring process is non-informative.

Hypotheses

𝐻0 ∶ 𝑆1(𝑡) = 𝑆2(𝑡), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0

𝐻1 ∶ 𝑆1(𝑡) ≠ 𝑆2(𝑡), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0

The alternative may seem sub-optimal, since it give no hints on the direction of the difference over time.
Therefore, the log-rank test has good power only when the direction stays the same.

Justification

If the people are labeled, for example as treated or untreated, and the labels are independent of survival,
then the distribution of the number treated who die (𝑑𝑖) at time 𝑡(𝑖) is hypergeometric.

This provides a null distribution.

Computation

Table 4.1 for interval 𝑖

Group A Group B Total
Dead 𝑑𝐴𝑖 𝑑𝐵𝑖 𝑑𝑖
Alive 𝑛𝐴𝑖 − 𝑑𝐴𝑖 𝑛𝐵𝑖 − 𝑑𝐵𝑖 𝑛𝑖 − 𝑑𝑖
Total 𝑛𝐴𝑖 𝑛𝐵𝑖 𝑛𝑖

By linearity of expectation, the expectation of death (𝑑) for the group A (not matter choose death or live
for group A or B, because the degree of freedom here is only 1):

𝐸[
𝑘

∑
𝑖=1

𝐷𝐴𝑖] =
𝑘

∑
𝑖=1

𝑑𝑖
𝑛𝑖

𝑛𝐴𝑖

The test statistic is approximately chi-square with 1 degree of freedom under 𝐻0 ∶ 𝑆1(𝑡) ≡ 𝑆2(𝑡). Reject 𝐻0
in favor of 𝐻1 ∶ 𝑆1(𝑡) ≢ 𝑆2(𝑡) at 𝛼 if the test statistic is larger than 𝜒1,1−𝛼 (the (1 − 𝛼) 100th percentile of
𝜒2 distribution).
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Observed: 𝑂 = ∑𝑘
𝑖=1 𝑑𝐴𝑖

Expected: 𝐸 = ∑𝑘
𝑖=1

𝑑𝑖
𝑛𝑖

𝑛𝐴𝑖

Variance: 𝑉 𝑎𝑟(𝑂) = ∑𝑘
𝑖=1

𝑛𝐴𝑖 𝑑𝑖
𝑛𝑖

(𝑛𝑖−𝑑𝑖)(𝑛𝑖−𝑛𝐴𝑖)
𝑛𝑖(𝑛𝑖−1)

Statistics: 𝜒 =
(|𝑂−𝐸|)

2

𝑉 𝑎𝑟(𝑂)

Example 4.1

The data:

Table 4.2

Time (Day) in Group A Status Time (Day) in Group B Status
28 1 2 1
32 1 4 1
49 1 72 1
84 1 77 1
357 1 79 1
933, 1078, 1183, 1560, 2114, 2144 0 n.a. n.a.

The Log-rank statistics table

Table 4.3

𝑡𝑖 𝑑𝐴𝑖 𝑛𝐴𝑖 𝑑𝑖 𝑛𝑖 𝐸[𝑑𝐴𝑖] 𝑉 𝑎𝑟[𝑑𝐴𝑖]
2 0 11 1 16 (1*11)/16 = 0.6875 0.215
4 0 11 1 15 0.733 0.196
28 1 11 1 14 0.786 0.168
32 1 10 1 13 0.769 0.178
49 1 9 1 12 0.750 0.188
72 0 8 1 11 0.727 0.198
77 0 8 1 10 0.800 0.160
79 0 8 1 9 0.889 0.098
84 1 8 1 8 1.000 0
357 1 7 1 7 1.000 0
Total 5 8.142 1.401

𝜒2
𝑛−1=1 =

(|5−8.142|)
2

1.401 = 7.05, Log-rank test (a.k.a score test) is 7.05, 𝑑.𝑓. = 1, 𝑝 = 0.0079

5.2 Alternative to Log-rank
Alternatives to the Log-rank test generally just differ in the weights assigned to the 2-by-2 interval tables,
similar to add a column of weight in table 4.3.

With weight:

1. Wilcoxon: weights each table by 𝑛𝑖, the number at risk. Earlier tables get greater weight due to larger
participants. It is most likely to detect early differences.

2. Tarrone and Ware (1977) weight each table by √𝑛𝑖. It is also more likely to detect early differences
than the log-rank test, but less likely than Wilcoxon.
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3. Other weights: Peto-Prentice weight, Modified Peto-Peto weight, Harrington-Fleming(p,q) weight, etc..

Without weight: Just as Log-rank weights the table at each death time equally. Relative to Wilcoxon and
Tarrone, the log-rank test is more likely to detect later differences in survival.

5.3 Log-rank test > 2 groups
Extended the log-rank test with > 2 groups

The log-rank test provides an overall p-value of whether there are any differences. Analogous to the ANOVA
F-test with K groups

Hypotheses

𝐻0 ∶ 𝑆1(𝑡) = 𝑆2(𝑡) = ... = 𝑆𝑘(𝑡), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0

𝐻1 ∶ 𝑆𝑖(𝑡) ≠ 𝑆𝑗(𝑡), 𝑓𝑜𝑟𝑠𝑜𝑚𝑒𝑖 ≠ 𝑗𝑎𝑛𝑑𝑡 > 0

Similar to Table 4.1 but with more columns for more groups, so the 𝑑.𝑓. = 𝐾 − 1. Correspondingly, with
more complicated formulas for 𝐸[𝑆], 𝑉 𝑎𝑟[𝑆] and 𝜒2 (please check the textbook).

Just as with the 2-sample log-rank test, weights can be added to the extended log-rank test to produce
weighted log-rank test (Wilcoxon, Tarrone-Ware, etc.).

Example 4.2:

SAS “strata” command tells SAS to treat the variable as a group indicator.

Figure 10: Codes of SAS, Extended Log-rank test
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Figure 11: Data table, Extended Log-rank test

Figure 12: Kaplan Meier curves, Extended Log-rank test

Figure 13: Test result, Extended Log-rank test

Conclusion: There are some differences in survival between the 4 groups. Further study would be needed

20
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to determine where the differences lie.

5.4 Log-rank test for trend
The log-rank test for trend (ordered groups)

If the groups are ordered, then the data are ordinal instead of categorical. The simple log-rank test ignores
the ordering, which may result in a loss of power.

Hypotheses

𝐻1 ∶ 𝑆1(𝑡) < 𝑆2(𝑡) < ... < 𝑆𝑘(𝑡)

Note:

1. As in trend tests for 2xK tables, the “distances” between the groups must be specified to do the
analysis. These “distances” may not be straightforward to figure out.

2. The data will similar to analyze continuous variable, 𝑑.𝑓. = 1.
Example 4.3:

SAS “strata” command tells SAS to treat the variable as a group indicator.

Figure 14: Codes of SAS, trend test

5.5 Log-rank test for stratification
Motivation: In two-group comparisons, heterogeneity of patients (at baseline) can impact the analysis like
a confounder. E.g. if we compared one treatment in dying and healthy people, the results may different
with no relationship to the intervention.

Hypotheses:

Suppose there are J strata and 2 groups, with survival functions 𝑆1,𝑗 and 𝑆2,𝑗, 𝑗 = 1, ..., 𝐽 . It assumes that
the effect of group or treatment is same in each specific strata (like two parallel curves).

𝐻0 ∶ 𝑆1,𝑗(𝑡) = 𝑆2,𝑗(𝑡), 𝑓𝑜𝑟𝑗 = 1, ..., 𝐽𝑎𝑛𝑑𝑎𝑙𝑙𝑡

𝐻1 ∶ 𝑆1,𝑗(𝑡) ≠ 𝑆2,𝑗(𝑡), 𝑓𝑜𝑟𝑠𝑜𝑚𝑒𝑗𝑎𝑛𝑑𝑠𝑜𝑚𝑒𝑡

Notes: If the effect of group is different across strata (like a modifier or interaction term), one may have
little power to detect this.

Example 4.3:

SAS “strata” command tells SAS to treat the variable as an confounder (SAS will control on it), “group”
command tells SAS to treat the variable as a group indicator (SAS will test its effect).
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Figure 15: Codes of SAS, trend test

Summary:

In general, the stratified log-rank test is only slightly less powerful than the log-rank test, because:

1. It may be that the noise eliminated by stratification actually makes the stratified log-rank test more
powerful than the log-rank!

2. Even if there is no stratification effect, using a stratified analysis costs little in terms of power loss.

3. The only times a stratified log-rank test can be a very bad idea are when: (1) substantial heterogeneity
of treatment effect across strata, or (2) there are very many strata.

4. Rule of thumb: The number of stratification variables should be kept to at most 2 or 3.

6 Semi-parametric model
A semi-parametric model has parametric and non-parametric components.

When comparing two groups, the hazards may be different, reflecting greater risk in one group.

Hazard Ratio: The hazard ratio is the instantaneous relative risk between the two groups.

ℎ(𝑡) = lim
Δ𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡|𝑇 ≥ 𝑡)
Δ𝑡 = lim

Δ𝑡→0
𝑃(𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡)

𝑃(𝑇 ≥ 𝑡) ∗ 1
Δ𝑡 = 𝑓(𝑡)

𝑆(𝑡)

𝐻𝑅(𝑡𝑖) =
ℎ𝐴𝑡𝑖

ℎ𝐵𝑡𝑖

6.1 Cox model
The Cox proportional hazards model describes the HR in terms of a single regression parameter.

Parametric component: In Cox regression, the ratio between the hazards is the parametric component.
The parametric component assumes the ratio does not change over time.

non-parametric component: The non-parametric component of Cox regression is the (baseline) hazard
function. The baseline hazard can have any shape.

The univariate Cox (a.k.a. proportional hazards) regression model is:

ℎ(𝑡) = ℎ0(𝑡)𝑒𝛽𝑋

where 𝛽 is a regression coefficient vector, 𝑋 is a covariate vector, and ℎ0(𝑡) is the baseline hazard function.
The baseline hazard is the hazard function when the covariate is zero. We also restrict to covariates that
are measured ONLY ONCE per subject (not multiple measurements over time).

Cox regression for 2 groups

Suppose x = 0 for a placebo group, and x = 1 for a drug treatment group.
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For the placebo group:

ℎ𝑝(𝑡|𝑥) = ℎ0(𝑡)𝑒𝛽𝑋

For the treatment group:

ℎ𝑡(𝑡|𝑥) = ℎ0(𝑡)𝑒𝛽𝑋

The hazard ratio of treatment group vs placebo group is:

𝐻𝑅(𝑡) = ℎ0(𝑡)𝑒𝛽𝑋𝑡

ℎ0(𝑡)𝑒𝛽𝑋𝑝
= 𝑒𝛽𝑡−𝛽𝑝

The proportion change in the hazard associated with moving from group treatment to group placebo.

𝐻𝑅𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛(𝑡) = ℎ0(𝑡)𝑒𝛽𝑋𝑡 − ℎ0(𝑡)𝑒𝛽𝑋𝑝

ℎ0(𝑡)𝑒𝛽𝑋𝑝
= 𝑒(𝛽𝑡−𝛽𝑝) − 1

Rescaling: If X is a continuous covariate, rescaling mean 𝑒𝛽𝑋𝑝 → 𝑒𝛽 𝑋𝑝
𝑐 . It will impact the slope of the Cox

regression model. But, the model is fundamentally the same.

Linear: If true relationship is 𝑦 = √𝑥, or 𝑦 = 𝑥2, etc., then the Cox model does not hold for y.

𝑙𝑜𝑔(ℎ𝑡(𝑡|𝑥)) = 𝑙𝑜𝑔(ℎ0(𝑡)) + 𝛽𝑋

Note: Nonlinear transformations of x lead to a different regression model may better fitting Cox regression
model.

6.2 Estimation
The primary objectives of studies that utilize the Cox proportional hazards model are to:

1. Estimate 𝛽 and its standard error.

2. Perform statistical inference on 𝛽, such as test the hypothesis 𝐻0 ∶ 𝛽 = 0 vs 𝐻𝑎 ∶ 𝛽 ≠ 0, or construct a
confidence interval for 𝛽.

Partial likelihood:

Suppose ℛ𝑗 is the risk set at time 𝑡(𝑗). Suppose one individual dies at time 𝑡(𝑗). The probability individual
𝑖0 ∈ ℛ𝑗 is the one who dies is:

𝑃(𝑑𝑖 = 𝑖0|𝑖0 ∈ ℛ𝑗) = ℎ0(𝑡)𝑒𝛽𝑋𝑖0

∑
𝑖∈ℛ𝑗

ℎ0(𝑡)𝑒𝛽𝑋𝑖
= 𝑒𝛽𝑋𝑖0

∑
𝑖∈ℛ𝑗

𝑒𝛽𝑋𝑖

These conditional probabilities can be calculated for each individual that dies at each failure time in a data
set. Multiplying the probabilities together results in something similar to a likelihood, called the partial
likelihood(Because no censoring considered in it).

Estimate 𝛽:
Assume failures occur at distinct times 𝑡(1) < ... < 𝑡(𝑚), and denote ℛ𝑗 as the risk set at time 𝑡𝑗. Let 𝑥(𝑗) be
the covariate value for the individual failing at time 𝑡(𝑗). The partial likelihood is:
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𝑃𝐿(𝛽|𝑝𝑡1
, 𝑝𝑡2

, ...𝑝𝑡𝑘
) = ∏

𝑗

𝑒𝛽𝑋𝑗

∑
𝑗∈ℛ𝑗

𝑒𝛽𝑋𝑗

The partial likelihood is maximized like a likelihood function, resulting in an estimate ̂𝛽.
Note:

1. Only event time counted in the 𝑃𝐿(𝛽|𝑝𝑡1
, 𝑝𝑡2

, ...𝑝𝑡𝑘
)

2. Why can one ignore the times between deaths in the calculation? The argument is that there can be
no information about the value of 𝛽 contained in these intervals because ℎ0(𝑡) might be zero at these
times.

3. Any intercept term would overparametrize the model, so no intercept is included. Because ℎ0(𝑡)𝑒(𝛽0+𝛽𝑋)

or ℎ′
0(𝑡)𝑒𝛽𝑋 is indistinguishable through fitting.

4. If there is more than one death at a death time then the sampling is not multinomial (Multinomial
sampling would allow the same person to die more than once). This sampling corresponds to the
noncentral multivariate hypergeometric distribution, an extension of the hypergeometric distribution
discussed in relation to the log-rank test.

Example 5.1: Toy example

Table 5.1

Time Status X variable
1 1 1
2 1 2
3 1 3

Because only one event in any interval:

𝑃𝐿(𝛽|𝑝𝑡1
, 𝑝𝑡2

, 𝑝𝑡3
) = 𝑒𝛽𝑋1

𝑒𝛽𝑋1 + 𝑒𝛽𝑋2 + 𝑒𝛽𝑋3
⋅ 𝑒𝛽𝑋2

𝑒𝛽𝑋2 + 𝑒𝛽𝑋3
⋅ 𝑒𝛽𝑋3

𝑒𝛽𝑋3

𝑃𝐿(𝛽|𝑝𝑡1
, 𝑝𝑡2

, 𝑝𝑡3
) = 𝑒𝛽

𝑒𝛽 + 𝑒3𝛽 + 𝑒2𝛽 ⋅ 𝑒3𝛽

𝑒3𝛽 + 𝑒2𝛽 ⋅ 𝑒2𝛽

𝑒2𝛽

This function can be maximized by taking the derivative with respect to 𝛽, setting to zero, and solving for
𝛽 numerically.

6.3 Tied event time
Tied event time is that: there is more than one death at a death time. There are three methods for handling
tied death times in Cox regression. In most practical settings, the three produce very similar results:

1. Exact method (This is the best one to use.)

2. Efron method (This is faster but not as good.)

3. Breslow method (This is fast, but the worst.)

Motivation:

If person A and B died at the same interval, the problem of tied events is:
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𝑃𝐿1(𝛽|𝑝𝑡1
, 𝑝𝑡2

, 𝑝𝑡3
) = 𝑒𝐴𝛽

𝑒𝐴𝛽 + 𝑒𝐵𝛽 + 𝑒𝐶𝛽 ⋅ 𝑒𝐵𝛽

𝑒𝐵𝛽 + 𝑒𝐶𝛽 ⋅ 𝑒𝐶𝛽

𝑒𝐶𝛽

𝑃𝐿2(𝛽|𝑝𝑡1
, 𝑝𝑡2

, 𝑝𝑡3
) = 𝑒𝐵𝛽

𝑒𝐴𝛽 + 𝑒𝐵𝛽 + 𝑒𝐶𝛽 ⋅ 𝑒𝐴𝛽

𝑒𝐴𝛽 + 𝑒𝐶𝛽 ⋅ 𝑒𝐶𝛽

𝑒𝐶𝛽

Very commonly:

𝑃𝐿1(𝛽|𝑝𝑡1
, 𝑝𝑡2

, 𝑝𝑡3
) ≠ 𝑃𝐿2(𝛽|𝑝𝑡1

, 𝑝𝑡2
, 𝑝𝑡3

)

So which one is right partial likelihood? 𝑃𝐿1(𝛽|𝑝𝑡1
, 𝑝𝑡2

, 𝑝𝑡3
) or 𝑃𝐿2(𝛽|𝑝𝑡1

, 𝑝𝑡2
, 𝑝𝑡3

)
Methods

If there is n tied events, the total possible order would be n!. E.g. if 3 deaths at time 𝑡(𝑗), corresponding to
patients M, N, P, then equal probability is placed on each ordering: MNP, MPN, NMP, NPM, PMN, PNM.
There are 3! = 6 orderings. The result is a likelihood for a mixture distribution of there 6 different 𝑃𝐿𝑠.

1. Exact method (This is the best one to use.)

The exact method uses the average partial likelihood. If there are 𝑑𝑗 ties at a time 𝑡(𝑗), then there are 𝑑𝑗!
permutations of the tied individuals. With no other information, any of these permutations of the ties are
equally likely. Each of the 𝑑𝑗! permutations gets weight 1

𝑑𝑗
.

𝑃𝐿𝑒𝑥𝑎𝑐𝑡 =
∑
𝑗

𝑃𝐿𝑗

𝑑𝑗!

Notes: With large data sets containing many tied survival times, the computation can be slow.

2. Breslow and Efron methods

Both the Breslow and Efron methods are approximations to the exact method. With few ties, Efron and
Breslow are equivalent. With severe numbers of ties, Exact or Efron is preferable. For formula please check
the textbook.

6.4 Hypothesis of Cox model
Hypothesis:

𝐻0 ∶ 𝛽 = 0

𝐻0 ∶ 𝛽 ≠ 0

Test

1. (Partial) Likelihood ratio test

Wilks (1938) showed that, under certain conditions, if, for a parameter 𝛽 and data set 𝑋𝑛, the null hypothesis
𝐻0 ∶ 𝛽 = 0 is true, then.

2𝐿𝑛[ 𝐿( ̂𝛽|𝑋𝑛)
𝐿(𝛽0|𝑋𝑛)] 𝐿⟶ 𝜒2

(1), 𝑛 → ∞

This theorem can be applied to the partial likelihood.
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𝐿𝑃𝐿( ̂𝛽): is the log partial likelihood evaluated at ̂𝛽 (the LPL maximizer). 𝐿𝑃𝐿(0) is the LPL evaluated at
𝛽 = 0. Under the null hypothesis 𝐻0 ∶ 𝛽 = 0, and under certain conditions, the statistic:

𝐺 = 2(𝐿𝑃𝐿( ̂𝛽) − 𝐿𝑃𝐿(0)) 𝐿⟶ 𝜒2
(1)

2. Wald test

A similar theorem, often called Cramer’s theorem, is that, under the same conditions as the previous theorem,
with 𝐼 as the Fisher information:

√𝑛( ̂𝛽 − 𝛽0) 𝐿⟶ 𝑁(0, 𝐼−1(𝛽0))

To test 𝐻0 ∶ 𝛽 = 𝛽0

𝑍 =
̂𝛽 − 𝛽0

𝑠𝑒( ̂𝛽)
, 𝑠𝑒( ̂𝛽) = 1

√𝐼𝑛( ̂𝛽)

𝐼𝑛( ̂𝛽) is the observed information (negative second derivative of the LPL) evaluated ̂𝛽
3. Score test.

Above some proofs, we know:

[ 𝑑
𝑑𝛽 𝐿𝑜𝑔(𝐿( ̂𝛽))]2

𝐼𝑛(𝛽0)
𝐿⟶ 𝜒2

(1)

Therefore, at the point 𝛽 = 0 the test is:

𝑧∗ =
𝑑

𝑑𝛽 𝐿𝑃𝐿(𝛽)
√𝐼𝑛( ̂𝛽)

Note: The score test is identical to the log-rank test.

Example 5.2

The “ties=EXACT” tells it to use the exact method for breaking tied survival times.

Figure 16: Codes of SAS, a proportional hazards regression
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Figure 17: Results of SAS, a proportional hazards regression

Summary:

1. All 3 tests are asymptotic, and may not work well for small sample sizes.

2. They generally agree pretty well.

3. Some have argued that the LR test is preferable (e.g., Hosmer et al. 2008, Collett 2000, others).
However, The score test is debatable the most commonly reported in the medical literature, perhaps
because of its equivalence to the non-parametric log-rank test.

4. These 3 tests (Wald, LR, score) are presented in SAS.

5. If study have no event, we will have no event time and, consequently, no test due to no LPL!

6.5 Multivariate Cox model
The model still is:

ℎ(𝑡) = ℎ0(𝑡)𝑒𝛽𝑋

𝛽𝑘 is the change in the log-hazard associated with a one unit increase in 𝑥𝑘 WHEN ALL OTHER COVARI-
ATE VALUES ARE HELD FIXED. Or, 𝑒𝛽𝑘 is the factor change in the hazard ratio associated with the one
unit increase in 𝑥𝑘 WHEN ALL OTHER COVARIATE VALUES ARE HELD FIXED.

Hypothesis:

𝐻0 ∶ 𝛽𝑖 = 0, 𝛽∉𝑖 = 𝑎𝑛𝑦

𝐻1 ∶ 𝛽𝑖 = 𝑎𝑛𝑦, 𝛽∉𝑖 = 𝑎𝑛𝑦
## Stratified Cox Regression
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After stratification, proportional hazards assumption can relax some. In particular, between-strata hazards
need not be proportional but within strata it need.

Recall the partial likelihood:

𝑃𝐿(𝛽|𝑝𝑡1
, 𝑝𝑡2

, ...𝑝𝑡𝑘
) = ∏

𝑗

𝑒𝛽𝑋𝑗

∑
𝑗∈ℛ𝑗

𝑒𝛽𝑋𝑗𝑘

For stratified analyses, the PL is calculated separately within each stratum, then combined.

𝑃𝐿𝑠𝑡𝑟𝑎𝑡𝑖𝑓𝑖𝑒𝑑(𝛽|𝑝𝑡1
, 𝑝𝑡2

, ...𝑝𝑡𝑘
) = ∏

𝑗
𝑃𝐿𝑗(𝛽)

Note that � is the same for all strata.

Example 5.3

The “ties=EXACT” tells it to use the exact method for breaking tied survival times.

Figure 18: Codes of SAS, Stratified Cox Regression

Figure 19: Results of SAS, Stratified Cox Regression

6.6 Paired survival data
Stratification can be used to analyze data for matched pairs experiment, or a case-control study.

Figure 20: Codes of SAS, paired analysis
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6.7 Cumulative baseline hazard function
Breslow estimator:

�̂�0(𝑡) = ∑
𝑡𝑗≤𝑡

𝑑𝑗
∑

𝑙∈ℛ𝑗

𝑒𝛽𝑋𝑘

7 Proportional hazards diagnostics
Because regression models can be misleading by some influential points or easily overfiting, it is necessary
to check some assumption and to make model diagnosis.

For a proportional hazards model, we already know that:

ℎ(𝑡) = ℎ0(𝑡)𝑒𝛽𝑋

∴ ∫ ℎ(𝑡)𝑑𝑡 = 𝑒𝛽𝑋 ∫ ℎ0(𝑡)𝑑𝑡

∴𝐻(𝑡) = 𝑒𝛽𝑋𝐻0(𝑡)
∴ log(𝐻(𝑡)) = log(𝑒𝛽𝑋𝐻0(𝑡)) = 𝑙𝑜𝑔(𝐻0(𝑡)) + 𝛽𝑋

∵𝐻(𝑡) = −𝑙𝑜𝑔(𝑆(𝑡))

∴ log(𝑆(𝑡)) = 𝑒𝛽𝑋 log(𝑆0(𝑡))

∴𝑆(𝑡) = (𝑆0(𝑡))
𝑒𝛽𝑋

Because of the proof above, we can know that if a proportional hazards model hold, log(𝐻(𝑡)) =
𝑙𝑜𝑔(𝐻0(𝑡)) + 𝛽𝑋. Log cumulative hazard function versus a function of time should produce parallel
curves with different 𝑥1.

However, because 𝐻(𝑡) or ℎ(𝑡) is unknown, functions above cannot help a lot when diagnosis.

7.1 Schoenfeld residuals
Schoenfeld residuals (Schoenfeld, 1982) are defined as:

𝑟𝑆 = 𝛿𝑖(𝑥𝑖 − ̂𝑎𝑖), ̂𝑎𝑖 =
∑

𝑙∈ℛ(𝑡𝑗)

𝑥𝑙𝑒 ̂𝛽𝑋𝑙

∑
𝑙∈ℛ(𝑡𝑗)

𝑒𝛽𝑋𝑙
, 𝑖𝑓𝑥𝑖𝑖𝑠𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑𝛿𝑖 = 0

Note: Schoenfeld residuals are zero (missing) for censored observations.

Example 6.1:

Table 6.1
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Time Status X variable
12 1 0
13 1 0
14 1 1
15 1 1
16 1 0

If from cox model we fitted ̂𝛽 is -0.07, then Schoenfeld residuals are:

1. 𝑟1 = 1 ∗ (0 − 0∗𝑒0∗(−0.07)+0∗𝑒0∗(−0.07)+1∗𝑒1∗(−0.07)+1∗𝑒1∗(−0.07)+0∗𝑒0∗(−0.07)

𝑒0∗(−0.07)+𝑒0∗(−0.07)+𝑒1∗(−0.07)+𝑒1∗(−0.07)+𝑒0∗(−0.07) ) = − 2𝑒1∗(−0.07)

3+2𝑒(−0.07) = −0.38

2. 𝑟2 = 1 ∗ (0 − 0∗𝑒0∗(−0.07)+1∗𝑒1∗(−0.07)+1∗𝑒1∗(−0.07)+0∗𝑒0∗(−0.07)

𝑒0∗(−0.07)+𝑒1∗(−0.07)+𝑒1∗(−0.07)+𝑒0∗(−0.07) ) = − 2𝑒1∗(−0.07)

2+2𝑒(−0.07) = −0.48

3. 𝑟3 = 1 ∗ (1 − 1∗𝑒1∗(−0.07)+1∗𝑒1∗(−0.07)+0∗𝑒0∗(−0.07)

𝑒1∗(−0.07)+𝑒1∗(−0.07)+𝑒0∗(−0.07) ) = − 2𝑒1∗(−0.07)

1+2𝑒(−0.07) = 0.35

4. 𝑟4 = 1 ∗ (1 − 1∗𝑒1∗(−0.07)+0∗𝑒0∗(−0.07)

𝑒1∗(−0.07)+𝑒0∗(−0.07) ) = − 𝑒1∗(−0.07)

1+𝑒(−0.07) = 0.51

5. 𝑟5 = 1 ∗ (0 − 0∗𝑒0∗(−0.07)

𝑒0∗(−0.07) ) = − 0
𝑒0 = 0

The plot
tab <- data.frame(Time = c(12, 13, 14, 15, 16), Residuals = c(-0.38,

-0.48, 0.35, 0.51, 0), ID = c("r1", "r2", "r3", "r4", "r5"))
p <- ggplot(tab, aes(x = Time, y = Residuals, col = ID)) + geom_point(size = 3) +

labs(x = "Event time", y = "Schoenfeld residuals", col = "Event ID") +
plot_theme

p
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Figure 21: Schoenfeld residuals plot

Notes:

1. If model have more covariates there will be a SEPARATE SET OF SCHOENFELD RESIDUALS FOR
EACH COVARIATE ̂𝛽1... ̂𝛽𝑘.

2. The Schoenfeld residuals should, if the model is true, be independent of time.

3. A plot that shows a non-random pattern over time is evidence of violation of the proportional hazards
assumption.

4. In single covariate model, scaled Schoenfeld residuals are used to assess the overall fit of the model.

5. In multivariate models, scaled Schoenfeld residuals are used to assess the model fit to individual
covariates.

6. In either case, the scaled Schoenfeld residuals can be used to assess departures from proportional
hazards.

7. A line can be fit to the plot followed by a test for zero slope; a nonzero slope is an evidence against
proportional hazards.

8. Schoenfeld residuals around zero

Example 6.1:
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Figure 22: Codes of SAS, Schoenfeld residuals

Figure 23: Results of SAS, Schoenfeld residuals of age
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Figure 24: Results of SAS, More Schoenfeld residuals of age

If a zero slope line located in the point-wise confidence interval. it still suggest a proportional hazards hold
model.

7.2 Martingale residuals
A Martingale is like a continuous version of a random walk.

𝑟𝑀 = 𝛿𝑖 − �̂�(𝑡𝑖, 𝑥𝑖, 𝛽), �̂�(𝑡𝑖, 𝑥𝑖, ̂𝛽) = 𝑒 ̂𝛽′𝑥𝑖�̂�0(𝑡𝑖), 𝑖𝑓𝑥𝑖𝑖𝑠𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑𝛿𝑖 = 0

�̂�0(𝑡) = ∑
𝑡𝑗≤𝑡

1
∑

𝑗∈ℛ(𝑡𝑖)

𝑒𝛽′𝑥𝑗

Notes:

1. Unlike Schoenfeld residuals, there is just one set of Martingale residuals for a fitted model.

2. Censored observations always have negative Martingale residuals.

3. Martingale residuals take values between (−∞, 1].
4. Martingale residuals sum to zero.

5. Values near 1 or with large negative numbers are potential outliers.

6. The asymmetry makes the plot a bit hard to interpret.

7. Martingale residuals can also be plotted against individual covariates in the model. The covariate itself
is excluded from the model from which the residuals are calculated.

8. Unlike other plots, linear trends when a Martingale residual is plotted against a variable are not a
model violation. But curvature is a model violation.
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Example 6.2:

Figure 25: Codes of SAS, Martingale residuals

Figure 26: Results of SAS, Martingale residuals of age

7.3 Influential points
The classical way of assessing a point’s influence in regression on an estimate ̂𝛽 is to simply:

1. Delete the point, say 𝑖
2. Re-estimate the slope on the n − 1 remaining individuals, ̂𝛽𝑖

3. Calculate “dfbetas” ̂𝛽 − ̂𝛽𝑖

7.4 Time-dependent covariates
The Cox PH model is:

ℎ(𝑡) = ℎ0(𝑡)𝑒𝛽𝑋

If a single variable 𝑥𝑗 changes over time, then the result is a time-dependent covariate model. Only introduce
time-dependent covariates into a model if they are really required.
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ℎ(𝑡) = ℎ0(𝑡)𝑒𝛽𝑓𝑥𝑗 (𝑡)+𝛽𝑖𝑥𝑖

Hazard ratio

1. HR at time t:

Let r and s be different individuals with covariates 𝑥𝑟(𝑡) and 𝑥𝑠(𝑡) at time t.

𝐻𝑅 = ℎ(𝑡, 𝑥𝑟(𝑡), 𝛽)
ℎ(𝑡, 𝑥𝑠(𝑡), 𝛽) = 𝑒[𝑥𝑟(𝑡)−𝑥𝑠(𝑡)]

2. HR at time 𝑡1 and 𝑡2:

𝐻𝑅 = ℎ(𝑡, 𝑥𝑟(𝑡1), 𝛽)
ℎ(𝑡, 𝑥𝑠(𝑡2), 𝛽) = ℎ0(𝑡1)

ℎ0(𝑡2)𝑒[𝑥𝑟(𝑡)−𝑥𝑠(𝑡)]

Partial likelihood:

𝑃𝐿(𝛽) =
𝑛

∏
𝑖=1

𝑒𝛽𝑥𝑖(𝑡𝑖)

∑
𝑘∈ℛ𝑖

𝑒𝛽𝑥𝑘(𝑡𝑖)

Note: Only calculate on event time not on censored time.

Example 6.3:

The following small data set contains survival information from four patients and smoking status x(1), x(2),
x(3), and x(4) at each death time.

Figure 27: Four patients survival information

𝑃 𝐿(𝛽) = ( 𝑒𝛽∗1

𝑒𝛽∗1 + 𝑒𝛽∗1 + 𝑒𝛽∗1 + 𝑒𝛽∗0 ) ∗ ( 𝑒𝛽∗0

𝑒𝛽∗0 + 𝑒𝛽∗1 ) ∗ (𝑒𝛽∗0

𝑒𝛽∗0 )

Types of time-dependent covariates:

Internal covariate: An internal covariate is a measurement that is taken on a “living” patient (e.g. Lung
function).

External covariate: An external covariate is a measurement that does not require a “living” patient
(e.g. environmental pollen density).

Example 6.4:

Time is measured from the time of first being put on the transplant list to death. The covariates are
transplant status (transstat, 0=none, 1=received), prior surgery (1=surgery,0=none), and age in years.
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Figure 28: Codes of SAS, Withou cox time-dependent

Figure 29: Result of SAS, Withou cox time-dependent

The effect of transplant when treated as a baseline covariate significant. Transplants seem to be saving lives.

Next

Transplant status is treated as a time-varying covariate. It is zero before the transplant, and 1 after the
transplant.

Figure 30: Codes of SAS, COX time-dependent

Figure 31: Result of SAS, COX time-dependent
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Now, there is no evidence of a beneficial effect of the heart transplant surgery. Because we only count who get
surgery for analysis in non-time-dependent, the effect point to the surgery group which had longer survival
may only due to an invert causal relationship that healthy patients can wait longer for donation.

8 Parametric model
A parametric model (e.g., for survival times) summarizes the whole distribution in a small number of pa-
rameters. Parametric models can be used to model large data sets. The drawback of parametric models is
that they add an assumption about the hazard to the semi-parametric approach.

Three common parametric models:

8.1 Exponential model
Exponential model have Constant hazard over time.

For 𝜆 > 0, 𝑡 > 0
𝑆(𝑡) = 𝑒−𝜆𝑡

𝐹(𝑡) = 1 − 𝑒−𝜆𝑡

𝑓(𝑡) = 𝜆𝑒−𝜆𝑡

ℎ(𝑡) = 𝑓(𝑡)
𝑆(𝑡) = 𝜆, Constant hazard over time

𝐻(𝑡) = ∫ ℎ(𝑢)𝑑𝑢 = 𝜆𝑡
Mean:

𝐸[𝑇 ] = 1
𝜆

Median:

𝑆(𝑡) = 𝑒−𝜆𝑡 = 0.5 → 𝑡𝑚 = 𝑙𝑛(2)
𝜆

8.2 Weibull model
Weibull model: Increasing or decreasing hazard over time.

For 𝜆 > 0, 𝛼 > 0
𝑆(𝑡) = 𝑒−𝜆𝑡𝛼

𝐹(𝑡) = 1 − 𝑒−𝜆𝑡𝛼

𝑓(𝑡) = 𝜆𝛼𝑡𝛼−1𝑒−𝜆𝑡

ℎ(𝑡) = 𝑓(𝑡)
𝑆(𝑡) = 𝜆𝛼𝑡𝛼−1, Hazard could increase or decrease monotonic over time.

𝐻(𝑡) = ∫ ℎ(𝑢)𝑑𝑢 = 𝜆𝑡𝛼

Note: If 𝛼 = 1, then the distribution is exponential.
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Figure 32: Different alpha, Weibull distribution h(t)

Figure 33: Different lambda, Weibull distribution h(t)

Mean:

𝐸[𝑇 ] = Γ(1+ 1
𝛼 )

𝜆 1𝛼

Γ(𝑥) = ∫∞
0 𝑒−𝑡𝑡𝑥−1𝑑𝑡. For positive integer Γ(𝑛) = (𝑛 − 1)!

Median:

𝑆(𝑡) = 𝑒−𝜆𝑡𝛼 = 0.5 → 𝑡𝑚 = ( 𝑙𝑛(2)
𝜆 ) 1

𝛼

8.3 Log-logistic model
The Log-logistic model: Permits non-monotone hazard over time.
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𝑆(𝑡) = 1
1+𝜆𝑡𝛼

𝐹(𝑡) = 1 − 1
1+𝜆𝑡𝛼

𝑓(𝑡) = 𝛼𝑡𝛼−1𝜆
(1+𝜆𝑡𝛼)2

ℎ(𝑡) = 𝛼𝑡𝛼−1𝜆
1+𝜆𝑡𝛼 , Permits non-monotone hazard over time.

Figure 34: Log-logistic distribution; red: lambda =1, alpha = 2; blue: lambda =1, alpha = 3

Mean:

𝐸[𝑇 ] = 𝜋
𝑠𝑖𝑛( 𝜋

𝛼 )𝛼𝜆 1𝛼
, 𝛼 > 1

Median:

𝑡𝑚 = 𝜆− 1
𝛼

Notes:

1. The log-logistic distribution models a non-monotone, non-constant hazard.

2. It is possible that there is a “high risk” time period after which hazard drops off like this.

8.4 Diagnosis
Is a hazard function Weibull ?

Because from data we can estimation cumulative hazard with NA or KM method, then if Weibull hold, it
should follow as

𝐻(𝑡) = ∫ ℎ(𝑢)𝑑𝑢 = 𝜆𝑡𝛼

. Therefore,
𝑙𝑜𝑔(𝐻(𝑡)) = 𝑙𝑜𝑔(𝜆) + 𝛼𝑙𝑜𝑔(𝑡)

. When we plot it, it should be a straight line with slope 𝛼 and intercept 𝑙𝑛(𝜆). If a straight line, then it’s
OK to weibull distribution.
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Figure 35: Check H(t), could be similar alpha and different lambda

Weibulls and PH

When two groups have same 𝛼, the proportional hazards assumption holds:

ℎ1(𝑡) = 𝜆1𝛼𝑡𝛼−1

ℎ2(𝑡) = 𝜆2𝛼𝑡𝛼−1

Is a hazard function log-logistic ?

∵𝐿𝑜𝑔( 𝑆(𝑡)
1 − 𝑆(𝑡)) = 𝐿𝑜𝑔(

1
1+𝜆𝑡𝛼

1 − 1
1+𝜆𝑡𝛼

) = −𝐿𝑜𝑔(𝜆) − 𝛼𝑙𝑜𝑔(𝑡)

Therefore, with 𝑙𝑜𝑔(𝑡) as x, 𝐿𝑜𝑔( 𝑆(𝑡)
1−𝑆(𝑡) ) as y, we can diagnosis with plot. Or we can also check the shape of

ℎ(𝑡).

8.5 Examples
Parametric survival models require stronger assumptions than non-parametric and semi-parametric models.
An advantage of parametric models is they permit full description of the hazard function.

Example 7.1: Exponential model

Figure 36: Codes of SAS, Fiting exponential model
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Figure 37: Results of SAS, Fiting exponential model

Figure 38: Results of SAS, Dignosis of exponential model

Notes:

1. From the result we had �̂� = 1
23 .

2. Exponential model is a special Weibull model (𝛼 = 1).
3. Mean = 23, Median = 15.9

4. Because 𝑙𝑜𝑔(𝐻(𝑡)) = 𝑙𝑜𝑔(𝜆) + 𝛼𝑙𝑜𝑔(𝑡) and 𝐻(𝑡) = −𝑙𝑜𝑔(𝑆(𝑡)). The plot of 𝑙𝑜𝑔(𝑡) vs 𝑙𝑜𝑔(𝑙𝑜𝑔(𝑆(𝑡)))
should close to a straight line with slope = 𝛼 = 1 if exponential model hold.

Example 7.2: Weibull model

Figure 39: Codes of SAS, Weibull model
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Figure 40: Results of SAS, Fiting Weibull model

Figure 41: Results of SAS, Dignosis of Weibull model

Notes:

1. Rather than 𝑆(𝑡) = 𝑒−𝜆𝑡𝛼 , SAS uses the parameterization 𝑆(𝑡) = 𝑒−( 1
𝜏 )𝛼𝑡𝛼

2. 𝜏 is the Weibull scale parameter in the SAS output,

3. 𝛼 is the Weibull shape parameter.

4. 𝜆 = ( 1
𝜏 )𝛼.

5. Because 𝑙𝑜𝑔(𝐻(𝑡)) = 𝑙𝑜𝑔(𝜆) + 𝛼𝑙𝑜𝑔(𝑡) and 𝐻(𝑡) = −𝑙𝑜𝑔(𝑆(𝑡)). The plot of 𝑙𝑜𝑔(𝑡) vs 𝑙𝑜𝑔(𝑙𝑜𝑔(𝑆(𝑡)))
should close to a straight line with slope = 𝛼 if Weibull model hold.

6. To test if the exponential model is adequate, we can test 𝐻0 ∶ 𝛼 = 1. Note that the confidence interval
for 𝛼 is (0.9856,2.5746), we do not reject 𝐻0.

Example 7.2: Log-logistic model

Figure 42: Codes of SAS, Log-logistic model
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Figure 43: Results of SAS, Fiting Log-logistic model

Figure 44: Results of SAS, Dignosis of Log-logistic model

Notes:

1. For SAS, 𝜆 = 1
𝑆𝑐𝑎𝑙𝑒 = 1

0.7533 = 1.327

2. For SAS, 𝛼 = 𝑒 −𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
𝑆𝑐𝑎𝑙𝑒 = 𝑒 −5.0200

0.7533 = 0.00128

3. From the plot, 𝐿𝑜𝑔( 𝑆(𝑡)
1−𝑆(𝑡) ) = −𝐿𝑜𝑔(𝜆) − 𝛼𝑙𝑜𝑔(𝑡) didn’t suggest a violated model.

9 Accelerated failure time regression models
9.1 AFT
For a random time-to-event T, an accelerated failure time (AFT) model proposes the following relationship
between covariates and 𝑌 = 𝑙𝑜𝑔(𝑇 ):

𝑙𝑜𝑔(𝑇 ) = 𝛽0 + 𝛽1𝑥1 + ... + +𝛽𝑝𝑥𝑝 + 𝜎𝜖

Now if all the 𝑥𝑖 = 0 and 𝛽0 = 0, then we define the baseline 𝑇0 as:

𝑙𝑜𝑔(𝑇0) = 𝜎𝜖

So time-to-event T of AFT model is same to:
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𝑙𝑜𝑔(𝑇 ) = 𝛽0 + 𝛽1𝑥1 + ... + +𝛽𝑝𝑥𝑝 + 𝑙𝑜𝑔(𝑇0)

or

𝑇 = 𝑇0 𝑒𝛽0+𝛽1𝑥1+...++𝛽𝑝𝑥𝑝

or

𝐸[𝑇 |𝑥𝑖 + 1] = 𝑒𝛽𝐸[𝑇 |𝑥𝑖]

or

𝑆(𝑡) = 𝑆0( 𝑡
𝑒𝛽0+𝛽1𝑥1+...++𝛽𝑝𝑥𝑝

)

or

ℎ(𝑡) = 𝑒−(𝛽0+𝛽1𝑥1+...++𝛽𝑝𝑥𝑝)ℎ0( 𝑡
𝑒𝛽0+𝛽1𝑥1+...++𝛽𝑝𝑥𝑝

)

Under the AFT model, the time scale “speeds up” (accelerates) or “slows down” (decelerates). 𝑒−𝛽 is called
the “acceleration factor”.

9.2 Diagnosis
Because 𝑇 = 𝑇0 𝑒𝛽0+𝛽1𝑥1+...++𝛽𝑝𝑥𝑝 , then 𝑡(𝑝𝑡ℎ) = 𝑒𝛽0+𝛽1𝑥1+...++𝛽𝑝𝑥𝑝 𝑡0(𝑝𝑡ℎ) A quantile-quantile plot of the
survival times should approximate a straight line through the origin with slope of 𝑒𝛽0+𝛽1𝑥1+...++𝛽𝑝𝑥𝑝 .
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Figure 45: Results of SAS, QQplot of Weibull AFT model

Note: Diagnostics are not as well studied as for the Cox proportional hazards model.

9.3 Weibull AFT model
The Weibull AFT model is

𝑙𝑜𝑔(𝑇 ) = 𝛽0 + 𝜂0 + 𝜎𝜖

𝑆𝑇 (𝑡) = 𝑒−𝑒
𝑙𝑜𝑔(𝑡)−𝛽0−𝜂𝑥𝜎 = 𝑒−(𝑡 1𝜎 )(𝑒

−𝛽0−𝜂𝑥𝜎 )

This is a Weibull distribution with 𝛼 = 1
𝜎 and 𝜆 = 𝑒 −𝛽0−𝜂𝑥

𝜎

The hazard function is ℎ(𝑡) = 1
𝜎 𝑡( 1

𝜎 −1)𝑒 −𝛽0−𝜂𝑥
𝜎 . This is a PH model.

Weibull AFT and PH

The PH baseline hazard is:

ℎ0(𝑡) = 𝑒𝛽∗
0𝑡𝛼∗

𝛼∗ = 1
𝜎 − 1
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Table 8.1

𝜎 𝛼∗ Hazard ℎ0(𝑡)
0 < 𝜎 < 0.5 𝛼∗ > 1 Increasing at increasing rate
𝜎 = 0.5 𝛼∗ = 1 Linear increasing in time
0.5 < 𝜎 < 1 0 < 𝛼∗ < 1 Increasing at decreasing rate
𝜎 = 1 𝛼∗ = 0 Constant hazard
1 < 𝜎 𝛼∗ < 0 Decreasing in time

9.4 Log-logistic AFT model
The log-logistic AFT model is (with 𝜖 has the logistic distribution with CDF)

𝐿𝑜𝑔(𝑇 ) = 𝛽0 + 𝜂0 + 𝜎𝜖

𝑆𝑇 (𝑡) = 1
1 + 𝑡 1

𝜎 𝑒 −𝛽0−𝜂𝑥
𝜎

The odds of survival at time t is:

𝑆(𝑡, 𝑥, 𝛽)
1 − 𝑆(𝑡, 𝑥, 𝛽) = 𝑡− 1

𝜎 𝑒 𝛽0+𝜂𝑥
𝜎

This is a proportional odds model but not a proportional hazard model: Consider a trial with single
covariate x, where x = 0 for the placebo group and x = 1 for the treatment group. The ratio of the odds of
survival in the treatment group relative to the control group at any time t is 𝑒 𝛽1

𝜎 .

Log-logistic AFT and PH

With 𝛼 = 1
𝜎 and 𝜆 = 𝑒−𝛼(𝛽0+∑𝑝

𝑖=1 𝛽𝑖𝑥𝑖):

ℎ(𝑡) = 𝛼𝜆𝑡𝛼−1

1 + 𝜆𝑡𝛼

Table 8.2

𝜎 Form
𝜎 < 1 Starts at 0, rises to peak, descends toward 0
𝜎 = 1 Starts at 𝜆, descends to 0
𝜎 > 1 Starts at ∞ , descends to 0
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Figure 46: Results of SAS, Dignosis of Log-logistic model

9.5 Examples
Fitting the AFM Weibull in SAS

Figure 47: Codes of SAS, AFM Weibull

Figure 48: Results of SAS, AFM Weibull
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Figure 49: Results of SAS, AFM Weibull

Notes:

1. The acceleration factor for a stage IV patient, compared to a stage I patient, is estimated to be
𝑒−(−1.54) = 4.68.

2. The median/mean lifetime for a stage I patient is estimated to be 4.68 times greater than for a stage
IV patient.

3. Unlike PH, negative coefficients mean larger T at baseline 𝑆(𝑡), less 𝑆(𝑡), worse survival.

AFM Log-logistic

Figure 50: Codes of SAS, AFM Log-logistic

Figure 51: Results of SAS, AFM Log-logistic
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Figure 52: Results of SAS, AFM Log-logistic

Notes:

1. The scale parameter is 𝜎 = 1.1846. So, the estimated hazard is therefore monotone decreasing.

2. At ten months, the estimated odds ratio of survival between the two groups (auto vs allo) is 𝑒 𝛽1
𝜎 =

𝑒 −0.0808
1.1846 = 𝑒−0.0682 = 0.93, with autologous doing worse.

10 End
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