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Yang’s notes 2 ESTIMATION

1 Concepts

n
1. Law of Large Numbers: % =Y, =+ > Y, converges (in a suitable sense) to p = E[Y;] as n — oo
i=1

2. Central Limit Theorem: if n is large, the distribution of X,, is approximately normal N (u,o?)
3. Parameter: a numerical characteristic of a population distribution, often unknown.

4. Statistics: a numerical summary of sample depending on sample only and does NOT involve un-
known parameters. Mathematically, a quantity T is a statistics whenever it can be expressed as:
T=fY,...Y,)

2 Estimation

Point estimation: a single value estimate of a parameter 6 based on the sample. The statistic 0 used to
estimate 6 is called an estimator of #. Since an estimator is a statistic, it certainly does NOT contain any
unknown parameter, and is solely a function of the sample. Interval estimation: construct an interval based
on the sample, which hopefully contains the true parameter with certain quantified accuracy. Confidence
interval (frequentist), credible interval (Bayes)

We will assume:

o 6: unknown parameter, taking value in a set © called parameter space (often a subset of R).

o 0: an estimator of #, which is a function of random sample (Y7, ...,Y,,).

Quality of the estimator:



Yang’s notes 3 BIAS

3 Bias
Compare the center of the distribution of 0 with 0.

Bias(0;0) = E[6] — 6

Given an estimator é, the Bias(é; 6) is a function of # € ©. An estimator 0 of 0 is said to be unbiased, if
Bias(6;0) = 0 for all 6 in the parameter space © of interest. Unbiasedness is a desirable property, since it
says averagely speaking, the estimator captures the true parameter no matter where the latter is located.

For unbiasedness, it is important to ensure that E[f] = 6 for every possible 6 of interest, not just for a single
value of 6.

Proposition: if Bias(6;6) = 0, then Bias(af; af) = 0, and Bias(6+a; 0+a) = 0, and Bias(af-+bij; af+bn) = 0
3.1 Exercise
8.3  Suppose that 8 is an estimator for a parameter § and E (8) = a6 + b for some nonzero constants

a and b.

a Interms of a, b, and 6, what is B(é)?

b Find a function of é—say, §*—that is an unbiased estimator for 0.
a. B(6;0) =E[f]—0=ab+b—0=(a—1)0+b
b. When E[6*] = 0, then B(6;60) = E[f] — 6 = 0.

~E[0] = af + b
E[égb] =0
~E[0* = é*b] = 6 is an unbiased estimator.

a
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4 Variance

Unbiasedness is NOT the only property we seek for. The variance of the estimator 0 of 0 to be:

Var(6;0) = Var(9)

S.E.(6) = \/Var(6;0)

4.1 Exercise

8.13  We have seen that if ¥ has a binomial distribution with parameters n and p, then Y /n is an
unbiased estimator of p. To estimate the variance of ¥, we generally use n(Y/n)(1 — Y /n).

a Show that the suggested estimator is a biased estimator of V (Y).
b Modify n(Y/n)(1 — Y/n) slightly to form an unbiased estimator of V(Y).
Based on binomial distribution, Binomial(n,p), Bias(p; E [ZY]) 0
Bias(V(Y); E[npq]) = 0.
However, Bias(E[pﬂ;E[(%)Q]) # 0.
Let > Y denoted as Y

a.
For9:n<%(lf%)> —y-2
E[0] = E[Y — 2] = E[Y] - 2E[Y?] = np — LE[Y?]
“ElY?] =V (Y) + E[Y]? = npq + n?p?
~E[0] = np — pq — np® = np(1 — p) —pq = pg(n — 1) # pgn
~Bias(V(Y); E[6]) # 0

b.
E[6] = pq(n—1)
E[3%160] = pa(n — 1) 3% = npq
A0r = anX(1 %) is an unbiased estimator of V(Y)

8.6 Suppose that E(@,) = E(f,) = 0,V() = o2, and V(8,) = o}. Consider the estimator
93 = a@l + (l - a)éz.
a Show that &, is an unbiased estimator for 6.

b Ifé, and 6, are independent, how should the constant a be chosen in order to minimize
the variance of 057

a.

E[0,) = E[ab, + (1 — a)b,) = E[ab,] + E[(1 — a),] = aE[0,] + (1 — a)E[f,] = ab + (1 — a)d = 6
b.



4.1 Exercise Yang’s notes 4 VARIANCE

Because independent, V(6;) = V(af, + (1 — a)by) = V(ab,) + V((1 — a)y) = a2V (6,) + (1 — a)2V(6,) =
a’o? + (1 —a)’o3

=LV (fy) = 2(0? + 03)a — 203
LV (0,) = 2(03 +03) > 0

2
202 2
oi+os

:-d%V(ég) = 0 is the minimize point, and a =

8.7 Consider the situation described in Exercise 8.6. How should the constant ¢ be chosen to
minimize the variance of #5 if 6, and ¢, are not independent but are such that Cov(#,, 8,) =
c #0?

~COV(aU +bV,cY +dZ) = acCOV(U,Y) 4+ bcCOV(V,Y) +adCOV (U, Z) + bdCOV (V, Z)
~COV (ab; + (1 — a)by) = a(1 —a)COV(6,,0,) = a(l — a)c

;V((lé?,) :) V(ahy + (1 —a)fy) = V(aby) + V((1 — a)fy) — 2COV (aby + (1 — a)fy) = V(ab,) + V((1 — a)b,) +
# 46V (03) = 2(0% + 03 —2¢)a — 203 + 2¢, 45V (05) = 2(0F + 03) —de = 2(V(9y) + V(8,) +2C0V(9;,0,)) =
2V (0, +05) >0

2
g5—cC

. d A soa . . _
~2=V(f3) = 0 is the minimize point, and a = T
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5 Mean Squared Error (MSE)

A measure of goodness of estimator combining both bias and variance:

MSE(6;0) = E[(6 — 6)?]

MSE(6:0) = Bias(6;0)2 + Var(6;0)
If the estimator 6 is unbiased. then MSE(6;6) = Var(6;6)

5.1 Exercise

8.1  Using the identity
@—0)=[0—-E@]+[E@)—0]1=1[0—E®©®]+ B@),
show that

MSE@) = E[(6 — 6)*] = V(8) + (B(H)).

MSE(6) = E[(6 — 6)?] (1)
~ E[(0- B®) + B(0))?] (2)
:E[<<9 (5)) B(0)* +2B(0)(0 — E(6)) (3)
= E[((6 — E(9))*] + E[B(6)*] + E[2B(6)(6 — E(9))] (4)
= V() + B(6)* +2B(0)E[(0 — E(0))] (5)
= V(0) + B(h)? (6)

8.4 Refer to Exercise 8.1.

a If § is an unbiased estimator for 8, how does MSE(#) compare to V (9)?
b If 4 is an biased estimator for 8, how does MSE(9) compare to V(6)?

+MSE(6) = V() + B()2
« if B() =0, MSE(§) = V()
b.
if B(A) >0, MSE() = V() + B(A)? > V(h)
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8.14 LetY,,Y,,..., Y, denotearandom sample of size n from a population whose density is given by
a—1 o
ay* /8%, 0<y<9,
J) = {
0, elsewhere,

where « > 0 is a known, fixed value, but & is unknown. (This is the power family distribution
introduced in Exercise 6.17.) Consider the estimator # = max(Y;, ¥», ..., Y,).

a  Show that 8 is a biased estimator for 6.
b Find a multiple of f that is an unbiased estimator of 6.
¢ Derive MSE(6).

. . 0 .
<B(0) = E[f] — 0 = [2ne2"" 4z x € [0, 6]
0

_ 1 1 no+l| _ o _ 1 _
= NQgra g |0 0 =na; -0 0+0

~ the estimator is biased.
b.

<Elf] = na

1
na+10
~E[2219] = §, and it is the unbiased estimator.

C.

MSE(9) = B(0)?> + VAR(9) (7)
- (nana1+ 6 6)2 + B[F?) — (B[A)2 (8)
0
namnafl
= (nanal—l— 10 —0)% + /xQW dx — (nana1+ 10)2 9)
0
—0 5 1 9 nao 9
:(na—l—l) + no + 2 _(na—|—19) (10)
_ 2 6 (11)

(na+ 1)(na+2)

8.19 Suppose that ¥,, Y, ..., Y, denote a random sample of size n from a population with an
exponential distribution whose density is given by

(1/6)e %, y >0,
Sy = {
0, elsewhere.
If Y4y = min(Yy, Ya, ..., Y,) denotes the smallest-order statistic, show that 6 = nYy 1s an

unbiased estimator for 6 and find MSE(6). [Hint: Recall the results of Exercise 6.81.]
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For B(nY()):

“P(Yq) > z) = P(min(Y7,Y,,Y5..Y,)) > x) = P(Y; > z)"
“F(Yq)=1-PY2z)=1-PY,>2z)"=1-(1-P(; <x)"
Y, ~ eap(0), F(Y) = 1—eF

SF(Yp) = 1—(1—14e5)" =1— %, and flyy)) = —n(e #)" e

+oo
EYy)=n [ af,(Vy) =nf =0
0

For MSE(nY y)):

MSE(nYy)) = B(nY{y)) + V(nY{y))
= NQV(Y(l))
— n2(B[Y2] - B[¥)?)

+oo

([ S0 - ()

0

=22 = (2))

n

0
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6 Efficiency

Give two estimators 51 and 52 of the same parameter 6, the efficiency of él relative to 92 is defined as (note
the reversed order in the ratio):

_ MSE(6,)
eff(01702) - MSE<91>
6.1 Exercise
9.7 Supposethat ¥y, Y-, ..., ¥, denote a random sample of size n from an exponential distribution
with density function given by
, (1/8)e ", 0=y,
fly)= [ / '
0, elsewhere.

In Exercise 8.19, we dt:temlincdl_hell 8, = n¥y, 1s an unbiased estimator of @ with MSE(#,) =
6. Consider the estimator f, = ¥ and find the efficiency of f, relative to 0.

'~'€ff(51,52) = MEBa)

MSE(8,)

“MSE(f,) = 62

10
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7 Consistency

Convergence: For non-random sequence, A sequence of non-random numbers z,, € R is said to converge to
x € R, if for any fixed € > 0 for all sufficiently large n, we have |x,, — 2| < e. For a sequence of random
variables X, is said to converge in probability to a constant x if for any fixed € > 0 as n — oo, we have

P
P(X, —z|<e)=Plx—e< X, <x+e€)— 1, denoted as X,, — .

Consistency: An estimator én (strictly, a sequence of estimators) of 6 based on a sample of size n is said to
be consistent.

Theorem 8.3.7: if MSE(0,;0) B oforallge O, then 6, is consistent for 6

P P P
Proposition: 1. X, +Y, = x+4y; 2. X, xY, »axy; 3. X,,/Y, = z/yifY,,y # 0); 4. If g is a continuous

P
function, then g(X,,) — g(z), and could be generalized to multivariate continuous function.

7.1 Exercise
. y P . . . . e
Exercise 8. Show that the concept — coincides with the usual convergence of non-random numbers if X,

are not random. Hint: if X, are not random, the event |X,, — 2| < € has probability either 0 or L.

+wlim f(n)=X,, ==

n—oo

P(l— 755 < 559~ PA—1< 951 Lif lim f(n)>0&e>0

f(n) n—o00

n—+00 P
sP([f(n) —a] <€) =< P(1— 2> &) 5 P(1+1>£) 51 Lif lim f(n) <0&e>0

+ P
P(f(n)—z<e) -5 PO—0<e) =1 | if lim f(n) =0&e >0
*9,27  Use the method described in Exercise 9.26 to show that, if ¥;;, = min(Y;, Y2, ..., ¥,,) when
Yi. ¥a, ..o, ¥, are independent uniform random variables on the interval (0, ), then ¥, is not

a consistent estimator for #. [Hint: Based on the methods of Section 6.7, ¥, has the distribution
function

0, y =0,
Fpy)=3 1= —-y/@)", 0=y=8,
1. y=f]

P(¥y) 0 < ) = P(6— ¢ < ¥y <040 = F(0+¢)~ F(B— ) = (1 567 — (1 557 = (5)" — (59"
~P(]Y{1) — 0| <€) = 0 when n is an even number.

n—+oo

“P([Yq) =0l <€) =2(5)" — 0 when n is an odd number and 0 < e < 6.

I

9.19 LetYy, Y,,..., Y, denote a random sample from the probability density function

0—1

ey, 0<y <,
Fo= {O, elsewhere,

where 6 > 0. Show that Y is a consistent estimator of 8/(6 + 1).

11



7.1 Exercise Yang’s notes 7 CONSISTENCY

1
“Ely] = [yoy’dy = ;%5
0

SMSE(Y, 32%5) =50

.Y is a consistent estimator of 0_%1

12
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8 Constructing estimators

By Method of Moments
n P

Sample’s kth moment is defined as my, = my,,, = L 3" YF. It is statistics. my, — E[Y] =y, k =1,2,....
i=1

Generally:

1. Compute the population moments: i, = 1, (0y,...,6,) = E[YF],k = 1,...,r which depend on 0, ...,0

T T

n
2. Establish a system of equations p(6,,...,0,) = m;, = % NYFEk=1,..r
i=1

3. Solve the system of equations, namely, express 0, ..., 6, in terms of m4, ..., m,., to obtain the estimators.

8.1 Exercise

9.78 LetY,, Y,, ..., Y, denote independent and identically distributed random variables from a

power family distribution with parameters « and # = 3. Then, as in Exercise 9.43, if « > 0,
ay* /3%, 0<y<3,
0, elsewhere.

S (yle) :{

Show that E(Y;) = 3a/(x + 1) and derive the method-of-moments estimator for «.

3
a—1
Byl = [y dy = gx (G| = 3

.'.0 = ;’7&

L6

55

9.72 1IfY,, Ys,..., Y, denote a random sample from the normal distribution with mean p and

variance o2, find the method-of-moments estimators of 1 and o”.
wm, = exp(ut + #)

~my = exp(p + %2) and my = exp(2u + 20?)

_ L.L.N o LLN
Y — p,and 0° — o
= expl¥ + )

2

202 = my —m? = exp(2Y + 26) — 2exp(Y + Z)

S

13
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9 Estimation Under Parametric Models

Let © be a subset of R. Let F, be a probability distribution which is uniquely determined by the value
6 € ©. Then the collection (Fy : 8 € ©) is called a parametric family of distributions parameterized by 6 in
parameter space ©.

Issues: If no other information of a parametric family of distributions about Y is known, then one value
of 6 does NOT determine one unique distribution. In a parametric family, while a single parameter CAN-
NOT correspond to multiple distributions, it can happen that multiple parameters correspond to the same
distribution (in this case we say the parameter is not identifiable).

How is a parametric family used for statistical inference?

Idea: Suppose we have IID sample Yi,...,Y, from one distribution Fy of the family, but we do not know

which . We need to construct an estimator 6 based on the sample, so that the particular distribution Fj
fits the sample well.

14
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10 MLE: Maximum likelihood estimator

Likelihood function L(0) = L(6;Y,...,Y,) = p(Yy;0) x ... x p(Y,,;0) or L() = f(Y1;0) x ... x f(Y,;6).

A likelihood function is the joint PMF/PDF. The maximum likelihood estimator (MLE) defined as 6 =

argmax L(0), that is the # maximizing the likelihood function. If multiple maximizers exist. choose one of
S

them. The solution  is a statistics since it only depends on (Y7,...Y,,). Choose the parameter which makes
the sample most probable.

Since the logarithm function In is strictly increasing, MLE can be replaced by 6= arg I;lzg( In L(#). Maxi-
S

mizing the log likelihood £(#) = In L(0) is often easier.
0(0) =InL(0) =Y In f(Y;;0)
i=1

10.1 Exercise

9.103 A random sample of size n is taken from a population with a Rayleigh distribution. As in
Exercise 9.34, the Rayleigh density function is

25\ 2
- ) , 05
F) = ( 0 )e t

0, elsewhere.

a Find the MLE of 6.
*b  Find the approximate variance of the MLE obtained in part (a).

2y _y2 2yn _vh
w0(6) = (). (e

= O [Jwe

A(0) = In(L(0)) = —nln(0) + nin(2) + in([Ty;) + (—%) X ¢

0
9.97 The geometric probability mass function is given by

pyIp)=pd-p’"  y=123...
A random sample of size n is taken from a population with a geometric distribution.

a Find the method-of-moments estimator for p.
b Find the MLE for p.

a.

+E[p(ylp)] = % for geometric probability

. _ 1
M=y

15
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.‘.p = H—l
b.
L(p) = p(1 =p)"1'p(1 = p)¥= " p(l = p)un=t = p" (1 — p) =¥
In(L(p)) = nin(p) + (32 y; — n)in(1 —p)
£p) = Lin(p) + 15 (S v —n)(~1)
let ¢(p) =0
Lin(p) + 1 (S y; —n)(—1) = 0
. n _ 1
P= vy T
9.104  Suppose that Y, Y, ..., Y, constitute a random sample from the density function
ey s,
fyle)y= {
0, elsewhere
where € is an unknown, positive constant.
a Find an estimator 8, for 6 by the method of moments.
b Find an estimator &, for 0 by the method of maximum likelihood.
Adjust #, and 6, so that they are unbiased. Find the efficiency of the adjusted &, relative to
the adjusted 0.
a.

oo

CELf310)] = [ ye?vdy = (—yev — ? )| =1+
[’ 0

.~.M1:1+0,§:u1—1

b.
L() = en?-Lu
wy >0
~max(L(0)) = max(nf — > y;)
~0 = min(Y;)

B[fl) = Elmin(¥;)] = f 2 (B,) da
= jo—mc(ee"”)”d:c

0
— (=5 = (|
—0+1 50

16



10.1 Exercise Yang’sifiotdd LE: MAXIMUM LIKELIHOOD ESTIMATOR

V(§2) = %
eﬁ(§17§2) = %

9.80 Suppose that Y, Y5, ..., ¥, denote a random sample from the Poisson distribution with
mean A.
a Find the MLE 2 for A.
b Find the expected value and variance of A.
¢ Show that the estimator of part (a) is consistent for A.
d What is the MLE for P(Y = 0) = e *?

a.
L) = 1255

Ln(L(V) = S in(2557) = Y (=A + yiln(\) — In(y;)))

MSEQ) =0+v(}) 50
d.
X is MLE of A
) also is MEL of A when Y = 0
“P(Y =0) = e

17
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11 Fisher information

2

I(O)ZE[ do?

Inp(¥;:6)] = Var[ & np(¥;;6)

where p is a marginal PMF/PDF, the second equality holds under some condition. Suppose 6 is the true
parameter. Under some conditions, the MLE 0 satisfies, as the sample size n — oco:

~ P

1. 6,, is consistent (60 — 6).

2. 6 is approximately distributed as N (6, n%w))

3. 0is asymptotically unbiased, with asymptotic variance ﬁ@'

In fact, no other consistent estimator can beat this asymptotic variance (Cramer-Rao lower bound).

12 Sufficiency

Suppose (Y7,...,Y,) is a sample from a population distribution with unknown parameter 6. A statistic T

rTn
is said to be sufficient for 6, if the conditional distribution of the sample (Y73, ...,Y,,) given T dose Not
depends on 6

Factorization Theorem: The statistic T = f(Y3,...,Y,,), { is a function, is sufficient for parameter 6, if and
only if the likelihood function can be factorized as L(6;Y7,...,Y,) = g(T,0) x h(Yy,...Y,,). Namely, it can be
factorized into two parts such that,

1. one part involves 6 and T;
2. the other part dose not involve 6.

The MLE 6 of 6 is a function of a sufficient statistics T = f(Yy,....Y.) of 6. By factorization theorem

) n

L(0;Yy,....Y,,) =9g(T,0) x h(Yy,...Y,). The h factor dose NOT depend on 6. So maximizing L with respect
to 0 is equivalent to maximizing g(7,0). Hence the maximizer depends only on T. It implies that MLE
automatically explores the full information (sufficient statistic) about 6.

12.1 Exercise

9.38 Let Y,V ..., 7Y, denote a random sample from a normal distribution with mean p and

variance 2.

a If u is unknown and o2 is known, show that Y is sufficient for .
If /¢ is known and &2 is unknown, show that S — w)? is sufficient for o2

If and o? are both unknown, show that 3|, ¥; and Zl_l are jointly sufficient for p
and o2 [Thus it follows that Y and }_"_ (¥; — ¥)? or Y and $? are also jointly sufficient
for 2 and 02 ]

For a normal distribution, the PDF is:

a.

if only p is unknown:

_ (yru)Q
L(p) = (%\/ﬂ)ne 207
= (=1 )ne—ﬁ Slyi—n)?
oV2m

18



12.1 Exercise Yang’s notes 12 SUFFICIENCY

Y — 0P = 2 g+ p? =Sy +2nY + p?

L_yng= g,z (v~

)ne*ﬁ@"}}ﬁ‘ﬁ)e*ﬁ(zy?)

oV2r

= g(Y, p1) < h(y)

Y is sufficient for p
b.

if only o2 is unknown:

similar to a,
(y; —u)?

L() = (e =5

oV2m

=g(0®, Y (y; —p)?) x 1

=S (y; — p)? is sufficient for p

c.
if both p, 0 are unknown:
similar to a,

L(/J) :( 1 )nefﬁ(zjy%rgzyiwuz)

oV2m

:9(2%272%»/%0) x1
=3 y2, > y; are sufficient for u, o

9.43 Let Y, Y, ..., Y, denote independent and identically distributed random variables from a
power family distribution with parameters o and 6. Then, by the result in Exercise 6.17, if
o, 0 >0,
a—1 o
ay* /0%, 0<y=<0,
fylae,0)= {
0, elsewhere.

If 6 is known, show that [];_, ¥; is sufficient for «.

L) = (g2)" [Tyf 7 {0 <y, <0}
= g(H Yis a) x 1
~ 1y, is sufficient for «

*9.51 LetY,, Ys,..., Y, denote a random sample from the probability density function
€_(y_9), y > 0,
Fy1o) = {
0, elsewhere.
Show that Y, = min(Y,, Y2, ..., Y,) is sufficient for 6.

L(9) = e’ vl {y; > 0}
wally, > 0

~min(y;) > 6

19
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12 SUFFICIENCY

L(9) = " =il {y; > 6}
= ¢ 2v: I {min(y;) > 0}

= g(min(y,),0) x 1

~min(y;) is sufficient for 6

20
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13 Optimal: MVUE

MVUE: An unbiased estimator  of # is said to be MVUE (minimum-variance unbiased estimator) or
optimal unbiased estimator, if for any other unbiased estimator 8", Var(6;0) < Var(6’;0) for all § € ©.

Procedure:
1. Find a sufficient statistic T for 6 using the Factorization Theorem.
2. Find a transform f so that if 6 = f(T)), then 0 is unbiased.

A sufficient statistic T for 6 is said to be complete, if the transform f that can be found in the procedure of
is unique.

13.1 Exercise:

9.56 Refer to Exercise 9.38(b). Find an MVUE of o2

9.38 LetVY,,Y, ..., Y, denote a random sample from a normal distribution with mean p and
variance o °.

a If u is unknown and o2 is known, show that Y is sufficient for .
If ¢ is known and o2 is unknown, show that Z?:l (Y; — p)? is sufficient for 2.

If ;1 and o'* are both unknown, show that ", ¥; and }__, ¥} are jointly sufficient for u
and o2. [Thus, it follows that ¥ and Y, (¥; — ¥)? or Y and S? are also jointly sufficient
for 1 and o2.]

For a normal distribution, the PDF is:

1 _w=w)?
) = —=e 5

For MVUE: 1. sufficient, 2. Unbiased

1.
Sufficient
if only o2 is unknown:
L) = (g )re TP = (Ghoyie TU5E
=g(0%, X (y; —w)?) x 1
~ > (y; — w)? is sufficient for o2

2.
Unbiased
ot = Y, o2
20 = Y (y; — p)? is unbiased for 3(Y; — p)?
=S (y; — p)? is MVUE of o2

9.64 LetY,, Y,,...,Y,bearandom sample from a normal distribution with mean u and variance 1.

a  Show that the MVUE of 2 is 2 = ¥~ — 1/n.

b Derive the variance of 2.
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For a normal distribution, the PDF is:

fly) = \/12—?6*%
For MVUE: 1. sufficient, 2. Unbiased
1.
Sufficient
L) = (e =

3y — ) = U 2 g+ p? = Y yP 4+ 2nY +
~L(p) = (\/%)”e*%Z(yi*lt)z

( )ne—%(z yi+2nY +p?)

—
i i
3 3

e (@nY i) =3 (X))

(= )ne Y (e 1)2e 2 (X ud)

=g(Y, n) x h(y})

.Y is sufficient for u

~Y is also sufficient for 2
2.

Unbiased

Y~ N, & = 1)

“EY?|—EYP=V({Y)=1

SE[Y?] — &=

Y2 — L is unbiased estimator of i

2Y? — L is MVUE of p?
9.62 Refer to Exercise 9.51. Find a function of ¥y, that is an MVUE for 6.

*9.51 LetYy, Y,..., Y, denote a random sample from the probability density function
ey >0,
Fr16) = {
0, elsewhere.
Show that Y(;y = min(Y;, Y>. ..., Y,) is sufficient for 6.

For MVUE: 1. sufficient, 2. Unbiased
1.

Sufficient

L(8) = e S I({y, > 0})

= en-Su({min(Y;) > 6})

=" RuI({Yy) > 0})
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13 OPTIMAL: MVUE

=9(0; Y1) x h(>_y;)
.-.Y<1) is sufficient for 6

2.
Unbiased
E[Yy)] = éfo/(Yu))dx

= [ —naz(ef®)"dx
0

P
=0++—0
.-.Y<1) is unbiased estimator of 6

:.Y<1) is MVUE of 6
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14 Confidence Intervals

Basic concepts: A confidence interval (CI) is given by I = [L,U] (two-sided), or I = (—oo,U] or [L,o0)
(one-sided), where L (lower bound) and U (upper bound) are statistics (functions of sample only).

Most often L and U have continuous distributions. In this case taking closed or open interval does NOT
matter. Since the sample is random, a CI is often random. On the other hand, when a CI has been reported
from the observed data (realized sample), it is NOT random any more. The notion CI can be extended to
a higher dimension, in which case it is called a confidence region.

Assume 6 is the true unknown parameter. Let I be a CI, then « =1 — P(6 € I) = P(0 ¢ I) is called the
confidence level. The number P(6 € T) = 1 — « is called the coverage probability or confidence coefficient.

We say I is a (1 — «)-CI for 6.
(—o0,U]is a (1 —ay)-CI for 6; [L,00) is a (1 — ay)-CI for 0; L < U. Then [L,U] is a (1 — oy — a,)-CI for 6.
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15 Pivotal

A quantity T' = f(0;Y7,...,Y,,) which is a function of sample and unknown parameter is said to be pivotal, if

ey Iy

assuming 6 is the true parameter, the distribution of T does NOT depend on 6. A pivotal quantity is NOT
a statistic in general. Although its functional depends on 6, its distribution doesn’t.

Pivotal methods:
1. Construct a pivotal quantity T.
2. Set up an equation of the form P(T <y)=1—a or P(T > y) =1 — «a. Solve to determine y.
3. Solve the inequality 7' <y or T' > y for 6 to get CI.

15.1 Exercise
Provide a short explanation of the concept (1 — a)-CI to someone with little statistical training

From a random sample which generated from a distribution with a parameter of ¢, the (1 —a)-CI has (1 —«)
chance to capture the true 0. E.g. if we repeated the process of using (1 — «)-CI to capture the true § by N
times with random samples each time, we would have (1 — a) X N times success.

8.44  Let Y have probability density function

200 —y)
fim={ e - 0=’
0, elsewhere.
a Show that Y has distribution function
. y =0,

2
Fy(y) = ?y—y— 0<y<@,

b Show that Y /8 is a pivotal quantity.
¢ Use the pivotal quantity from part (b) to find a 90% lower confidence limit for 6.

x
_'_f2(07y)dx:E_%7for0<$<9
0

0 ,y<0

1 ,y>0
b.
U=
wfy(u) = fy[h_l(u)]dg;l = 2(9;29"> x 0 =2(1—u), u€(0,1), not depend on 6
% is pivotal.
c.

“Fy(z) = P(u<z)=2x—2% (u€[0,1]), let a and b (b>a) are two 90% cut-off
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“Fy(a) =2a—a?>=0.1 and F;(b) =2b—b>=0.9
“(a—1)2=09and (b—1)2=0.1

+a,b € [0,1]

ca=1—+09andb=1-+0.1
.-.X21—\/@0r%§1—\/ﬁ

0 < o= F or § > 1_% are two different 90%CI
~0 € [1_7\/0%1700)

8.45 Refer to Exercise 8.44.

a Use the pivotal quantity from Exercise 8.44(b) to find a 90% upper confidence limit for 8.

b If 8, is the lower confidence bound for 6 obtained in Exercise 8.44(c) and 6, is the upper
bound found in part (a), what is the confidence coefficient of the interval @, 6)?

a.
From 8.44:
w0 < o F or 0 > 17%7 are two different 90%CI
. Y
0 € (—oo, 1_7\/@]
b.

P € (0;,0,)) = P(0 € (0,,00) ()0 € (—00,0;))
=P(0 € (0,,00)) + P8 € (—00,0;,)) — P(0 € (8,00) | ] € (—00,0,))
=09+09-1
=0.8
4. Let Y7,...,Y, be an IID sample from Uniform(0,#). Construct a two-sided (1 — «)-confidence

interval for 6.

Let § = max(Y;,...Y,,)

P(g <u)= P(% <u) X P(% <u) X .. X P(% < u)
Yin)
=u" (Y, <0,u= 5 € [0,1])
T= g = —5 is pivotal
Y m

F(T) = ()" €l5,1- 5]

Y, Y,
0c (n) (n)

[tehy, o)
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16 Z-Score

The most challenging part of the pivotal method is to come up with a good pivotal quantity. Fortunately
for many common situations, when the sample size is large, one type of pivotal quantity called Z-score can
be always used.

By Central Limit Theorem, we know (approximate equality in distribution):

v _
L Nw©,1)

$h

If 02 is unknown, use S? sample variance replace it S? = =5 > (Y;— Y,)%

-

Il
—

3

Definition: suppose 6 is an estimator of 6 and 52 is a consistent estimator of o2 = Var[é]. Then the quantity

z=020% N(0,1) is called the Z-score. Then 6 + 024 /2

o

16.1 Exercise

Construct a two-sided (1 — «)-CI for 0 in Uniform|0, ] based on IID Y;,.... Y,
Let y; < y,, and % is pivotal

'.-P(TZyl)zl—%andP(TSyQ):l—%

“yp = 2zg and yp = 2o

Y Y
T:§2y1:2’%andT:FSyQZZli%:—Z%
0 <X and > X

Z% 72%

~(1—a)-Clis [-X-,

—Zz

]

8.56  Is America’s romance with movies on the wane? In a Gallup Poll° of n = 800 randomly chosen
adults, 45% indicated that movies were getting better whereas 43% indicated that movies were
getting worse.

MR
kS
R "'<

a Find a 98% confidence interval for p, the overall proportion of adults who say that movies
are getting better.
b Does the interval include the value p = .50? Do you think that a majority of adults say
that movies are getting better?
a.

+ n=800, p=0.45

26 = /22 = 0.0176

i

«Z =22 L N(0,1)

“P(Z < 24)9) =001 and P(Z > 21_4)9) = 0.01, 2 )9 = —21_4 9 = —2.32

“Zajp S Z< Zl-—a/2
+0.409 =p — GZQ/Q <p<p+ 3%/2 = 0.491
b.
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+p < 0.5, less than half think it better.

~ a majority of adults say that movies are not getting better.
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17 Small-sample CI

When the sample size is small, to compensate for the lack of information due to small sample size, we shall
make a strong assumption: a sample follows a normal distribution (central limit theorem).

Let Z(Z,, Zy, ..., Z,,) be LLD. N(0,1):
1. x*(v), distribution of W = Z%2 /o + Z2/o + ... + Z2/o;

2. t(v), distribution of T' = N2 t(v) has a similar shape to normal distribution (e.g. v > 30).

For normal distribution N ~ (p,0?)

THEOREM 7.1: Y = L 3" Y, ~ N(p,0?/n).
i=1

n

n
THEOREM 7.2: for Z; = (Y; —p)/o, 3 Z? = 3 (¥o£)? has a x? distribution with degrees of freedom (df)
i=1 i=1

= 1.

3

THEOREM 7.3: =95 — 1 S°(Y, — V)2 has a x2 distribution with (n-1) d.f., $2 is a random sample

i=1

variance.

Definition 7.3: Let W, and W, be independent x? distributed random variables with v; and v, d.f.. Then

F%;;Z; is said to have an F distribution with v; numerator d.f. and v, denominator d.f..

17.1 Exercise

Derive a one-sided (1 — a)-CI (—o0, U] for p

P(T, =Y >, . ))=1-a

n

Ve
p<Y — to(n—1) U
t(y,(n—l) S 0

VRS (_007Y + |ta,(n71)|ﬁ]

8.90 Do SAT scores for high school students differ depending on the students’ intended field of
study? Fifteen students who intended to major in engineering were compared with 15 students
who intended to major in language and literature. Given in the accompanying table are the
means and standard deviations of the scores on the verbal and mathematics portion of the SAT
for the two groups of students:'®

Verbal Math
Engineering y=446 s=42 y=548 s=57
Language/literature y =534 s=45 7y =517 s=352

a Construct a 95% confidence interval for the difference in average verbal scores of students
majoring in engineering and of those majoring in language/literature.

b Construct a 95% confidence interval for the difference in average math scores of students
majoring in engineering and of those majoring in language/literature.

¢ Interpret the results obtained in parts (a) and (b).
d What assumptions are necessary for the methods used previously to be valid?
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17.1 Exercise Yang’s notes 17 SMALL-SAMPLE CI

a.
Y,, =446, S,,=42,n, =15, and Y, =534, S, , = 45, n, = 15.

G2 (1St 1)SE,
: Se,l,verbal - 30—2 = 1894.5

2(Y, , = Y,,) + Lo g051/1894.5(1/15 + 1/15)

(g — Hy) € [—88 — 2.048407 * 15.89339 = —120, —88 + 2.048407 * 15.89339 = —55]
b.

Y, ,, =548, 8,,, =57, n; =15,and YV, ,, =517, S;,, = 52, ny = 15.

(n1—1)82  +(no—1)S7,,

"'Sg,l,math = 30—2
2(Yorn = Yim) % tojo0s\/2976.5(1/15 4 1/15)
(Mo — Hym) € [31 — 2.048407 % 19.92151 = —10, 31 + 2.048407 * 19.92151 = 72]

= 2976.5

C.

(:U’e,'u - :u’l,v) € [_1207 _55] and (Me,m - Ml,m) € [_107 72]

-~ Engineering has lower average scores of Verbal than Language/literature, and Engineering has similar
average scores of Math to Language/literature

d. These methods need the SAT scores of Engineering and Language/literature students follow Normal
distribution.
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18 CI for o2

T = (n=1)53

18.1 Exercise

8.102 The ages of arandom sample of five university professors are 39, 54, 61, 72, and 59. Using this
information, find a 99% confidence interval for the population standard deviation of the ages
of all professors at the university, assuming that the ages of university professors are normally
distributed.

B _ (=152 X2(n —1=4)

o2

R (Y-, = 48

“T = 48/0?

X.005.4 = 0.207 and X3 495 4 = 14.860

=T € [0.207,14.860]

~o? € [3.23,231.88]

Provide other real-life scenarios where such imbalance (a) exists and (b) does not exist.

a. Imbalance severity of false decision. For cancer diagnosis, H;: Having cancer, Hy: Not having cancer.
Mistake on H2 is much severity.

b. Balance severity of false decision. For a patient has a higher Human C-Reactive Protein (CRP)
Protein, the doctor given antibiotics to treat inflammation. H;: Upper respiratory infection, Hy:
Lower respiratory infection. Mistake on H2 is not much severity.

31



Yang’s notes 20 ELEMENTS OF STATISTICAL TEST

19 Statistical Decision

Definition 11.1.2:
1. {Fy : 0 € ©}: a parametric family of distributions (e.g., F,, = Bernoulli());
2. {Y3,...,Y, }: samples from one (unknown) Fy;
3.06=0,U0,and ©, N6, =
4. Hypothesis H, : 0 € ©,, Hy : € O4: (e.g.,, ©® =[0,1] =6, Ub, =[0.9,1] U[0,0.9))
5. T: a statistic used to make decision H; or H,;
6

. Ry, Ry two disjoint regions in R , so that R, U R, cover all possible values of T. (e.g., T =Y, ,
Ry =[0;,1] and R, = [0,6,))

Decision rule

TeR, =H,TeR,=H,

Py(A) : probability of event A when#is the true parameter
Mistake is inevitable when 6 is near the border between ©; and ©, (candidate distributions are indistin-
guishable).
Mistake A: H; holds but we choose H, (falsely reject Hy).
Mistake B: H, holds but we choose H; (falsely reject H,).

Severity of false decision. If mistake on H; or H,, the severity similar then it is balance, otherwise is
imbalance. When the imbalance exists, New idea: In a statistical decision, we first guard against the
mistake of more severity (e.g., ensure the probability of this mistake is < 0.05), and then do our best to
minimize the probability of other mistake.

20 Elements of statistical test

Definition 11.2.1.
Statistical hypothesis test (HT) is a statistical decision process which has the following elements:
1. Null hypothesis H, : § € O;

2. Alternative hypothesis H, : 6 € ©,; Where disjoint ©,U ©, = ©, and Severity of falsely accepting H,,
< Severity of falsely accepting H,.

3. Test statistic T;

4. Rejection region RR;

5. Decision rule: T' € RR = rejectH,(or acceptH,); otherwise, T' ¢ RR = fail to reject H,,.
Definition 11.2.3.
In a HT:

1. Type I Error: H, is true but we choose H, (falsely reject H,), whose probability is denoted as

2. Type II Error: H, is true but we choose H, (falsely reject H, ), whose probability is denoted as
ﬁ(9> = PO(T ¢ RR)79 € @a
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3. The probability of accepting H, when H,, is true is called power of the test, pw(f) = Py(T € RR) =
1—75(9),60 € ©,. namely,

Important: 1. In general, both «(f) and 5(0) are functions, but defined on different domains 0, and ©,
respectively. 2. simple null hypothesis or composite null hypothesis. 3. o = max(«(6) : 6 € ©)

20.1 Exercise

Provide an elementary explanation of the concepts in a HT: null/alternative hypotheses, Type
I/II errors and power to someone with little statistical training.

Answer:
Let a range O can divided into two separate sub-area 0, ©,, and we have a  needed to be tested
1. Null hypothesis: the hypothesis to be tested, e.g § belong to O, 0 € 0.
2. Alternative hypotheses: the hypothesis we could accept when we reject the null hypothesis.
3. Type I errors: if the null hypothesis is true, the probability of falsely rejecting the null hypothesis.
4

. Type II errors: if the alternative hypothesis is true, the probability of falsely rejecting the alternative
hypothesis.

5. Power: if the alternative hypothesis is true, the probability of correctly accepting alternative hypothesis.

Suppose Y, are IID N(#, 1) as above. Suppose we test H,:0 =0 vs H,:0+# 0. Still T =Y, but
RR now takes the form (—oo,—c] U [+¢,o0), where c is a threshold chosen to make the test at
level a. Calculate the type I, IT error probabilities and the power.

Answer:
“Y; ~N(0,1), Hy: 0=0,H,:0#0, T =Y ~ N(0, 1), Reject region (RR) = (—00,—c] U [+¢,00)
X~ N(0,1)

N

Type I error: when 6 =0
~a(0 =0) = Py(T € RR)
=P(T <—cUT >¢)

=1—Py(—c<T<c)
= 1— Py(V(—c—0) < Va(T — ) < V(e —0))
—1— (e(v/nlc—0)) — @(Vn(~c— 1))

=1 (®(cv/n) ~ ®(~cv))
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2

Z1_ o
SCA/N = 2 Cc =
1—%7 NG

Type II error: when 6 £ 0

2B(6 + 0) = Py(T ¢ RR)

Py(—c<T<c)

= q)(zlfg —0Vn) — @(*217% —0v/n)
Power: when 0 # 0, Py(T € RR) =1— (0 #0)
apw(f) =1 — (q><zl,% —O0) — B2y s — Wﬁ))
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21

LARGE-SAMPLE Z-TESTS

21 Large-sample Z-tests

Idea: 1. Estimate 6 with an estimator 6; 2. § far from 0y = reject H,

7 6 —6,
H, H, Rejection Rule
0 =10, 6 + 6y 12l > Z, /s
6 =0y orf<o, 0> 0, 1Z] > Zs s
0 =0yord=>0, 0 <0, 1Z] < —Z )0

If Hy: 0 =0, is true, then when sample size is large, Z ~ N(0,1)
Type Lerror: Py (|Z] > z,0) = «

Hypothesis test and confidence interval: if a CI fails to cover 6, then 6= 0, is unlikely.

21.1 Exercise

8.56  Is America’s romance with movies on the wane? In a Gallup Poll° of n = 800 randomly chosen
adults, 45% indicated that movies were getting better whereas 43% indicated that movies were

getting worse.

a Find a 98% confidence interval for p, the overall proportion of adults who say that movies

are getting better.

b Does the interval include the value p = .50? Do you think that a majority of adults say

that movies are getting better?

a.

+ n=800, p=0.45

w6 = /PPl — 00176

n

+p < 0.5, less than half think it better.
~ a majority of adults say that movies are not getting better.
Derive a one-sided (1 — «)-CI (—o0, U] for p

P<T = Qt 2 ta,(nfl)) R e

7
% S Yﬁtoz (nfl)ﬁ
ta,(nfl) S 0
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IS (_007}7 + |ta,(n71)|ﬁ]

8.90 Do SAT scores for high school students differ depending on the students’ intended field of
study? Fifteen students who intended to major in engineering were compared with 15 students
who intended to major in language and literature. Given in the accompanying table are the
means and standard deviations of the scores on the verbal and mathematics portion of the SAT
for the two groups of students:'®

Verbal Math

446 s=42 =548 s5=57
=534 5=45 y=5

Engineering y
y

Language/literature

a Construct a 95% confidence interval for the difference in average verbal scores of students
majoring in engineering and of those majoring in language/literature.

b Construct a 95% confidence interval for the difference in average math scores of students
majoring in engineering and of those majoring in language/literature.

¢ Interpret the results obtained in parts (a) and (b).
d What assumptions are necessary for the methods used previously to be valid?

a.
Y,, =446, S,,=142,n, =15, and Y, =534, S, , = 45, n, = 15.

.. Q2 (=182 +(n—1)S7,
. Se,l,verbal - 30—2 = 1894.5

2(Y, =Y, ) % ton0/1894.5(1/15 +1/15)

(g — Hy) € [—88 —2.048407 * 15.89339 = —120, —88 + 2.048407 * 15.89339 = —55]
b.

Y, =548, S, ,, =57, ny =15, and Y}, =517, S, ,, =52, n, = 15.

(n,—1)S2 . +(n 71)5%m
"'Sz,l,math = 20— z Lm — 2976.5

2(Yon = Yim) % tojo0sy/2976.5(1/15 4 1/15)
(M — Hym) € [31 — 2.048407 # 19.92151 = —10, 31 + 2.048407 * 19.92151 = 72]

C.

(:uem - :ul,v) € [_1207 _55] and (Me;m - /’Ll,m) € [_107 72]

-~ Engineering has lower average scores of Verbal than Language/literature, and Engineering has similar
average scores of Math to Language/literature

d.

These methods need the SAT scores of Engineering and Language/literature students follow Normal distri-
bution.
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22 Small-sample tests

Under H,,

_ Y — pg
g/vn

, where 62 = L Z?:l(YZ —Y,)? is the unbiased estimate of ¢

T ~tn—1)

Two-sample meas Assumption: {X;,...,X,;} IID N(u;,0?), {Y1,..., Y.} IID N(py,0?), X;’s are inde-
pendent of Y;’s.

P — po > Op; >t
Hy:py —pg =100 vs Hy: Qg —po #9p;  vs RR=qt< ~taj2(0) OF > 1o )0(0)5
My — po < 60; i< _tOt(l/>;

V=mn;+nyg—2

X-Y -9
T=— O ~t(ny +ny—2), under H,
o/\/1/ny +1/ny
S (X = X))+ 3 (Y - Y)?
ng +ny —2

52 =

22.1 Exercise

10.17 A survey published in the American Journal of Sports Medicine* reported the number of
meters (m) per week swum by two groups of swimmers—those who competed exclusively in
breaststroke and those who competed in the individual medley (which includes breaststroke).
The number of meters per week practicing the breaststroke was recorded for each swimmer, and
the summary statistics are given below. Is there sufficient evidence to indicate that the average
number of meters per week spent practicing breaststroke is greater for exclusive breaststrokers
than it is for those swimming individual medley?

Specialty

Exclusively Breaststroke  Individual Medley

Sample size 130 80
Sample mean (m) 9017 5853
Sample standard deviation (m) 7162 1961
Population mean 1 o

State the null and alternative hypotheses.
What is the appropriate rejection region for an o = .01 level test?

Calculate the observed value of the appropriate test statistic.

e T 9

What is your conclusion?
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a.
Null hypotheses: p; < py = 6y = 1y — py < 0, alternative hypotheses: p; > py =0, = iy — g >0

b.
52 = X=X (Y=Y 339272854

ny+n,—2

~6 = 5768.263, and /L + L = 0.1420996

ny Ny

o X-Y-§
T = 5768.263/0.1420996 t(130 +80—2)

“|taos 0.01] = 2.3444
=~ the rejection region for T', is RR € [2.3444, +0)

C.

T = XY _ 9017-5853 _
T = 5768363/0.1420096 — 405931 — 0-07794428

d.

Fail to reject H, — not enough evidence to conclude the mean distance for breaststroke is larger than
individual medley.

10.30 A manufacturer claimed that at least 20% of the public preferred her product. A sample of 100
persons is taken to check her claim. With ¢ = .05, how small would the sample percentage
need to be before the claim could legitimately be refuted? (Notice that this would involve a
one-tailed test of the hypothesis.)

When 6, = 0.2, sample size = 100, then o2 = pUp) 5 — (.04, One-tail reject region = [0, ]

n

a(f =0.2) = P,(A € RR)
=Py0<c)
§—-02 ¢—02
=P, <
(901 = 004
=«
=0.05
“Zg.05 = —1.645
c&gf < —1.645
~c <0.1342
~RR € [0,0.1342]
10.46 A large-sample a-level test of hypothesis for Hy:0 = 6, versus H, :0 > 6, rejects the null
hypothesis if
b6 — 6y
> Zg.
o

Show that this is equivalent to rejecting H if 8, is less than the large-sample 100(1 — «)%
lower confidence bound for 6.
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. é;?o > ZQ
6

"0 — by >z,

0 — apz, > by

10.48 A large-sample a-level test of hypothesis for Hy:60 = 6, versus H, :0 < 6, rejects the null

hypothesis if
6 — 6,
< —Z4.
0%

Show that this is equivalent to rejecting Hy if ) is greater than the large-sample 100(1 — «)%
upper confidence bound for 6.

..6-6,
oy S e

- 0y < —ayz,

0+ gz, <t

t> ta(nfl);
RR = |t‘ > toz/?(nfl);

t< _ta(nfl);
Find the CIs of i corresponding to the three rejection regions above respectively.
Answer:
(—OO, Ht %ta(nfl));

(1—a)%CIl=1< (u— %ta/z(nq)a M+ %ta/z(nfl));
(= Frtam-1),%);

10.72  An Article in American Demographics investigated consumer habits at the mall. We tend to
spend the most money when shopping on weekends, particularly on Sundays between 4:00
and 6:00 P.M. Wednesday-morning shoppers spend the least.” Independent random samples
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of weekend and weekday shoppers were selected and the amount spent per trip to the mall was
recorded as shown in the following table:

Weekends Weekdays
n, =20 n, = 20

y, = $78 ¥y, = %67
51 = $22 52 = $20

a Is there sufficient evidence to claim that there is a difference in the average amount spent
per trip on weekends and weekdays? Use o = .05.

b What is the attained significance level?
a:

Ho:pg —po =0vs Hy 2 piy — pp 70

52 = (ny=1)s3+(ny—1)s3 = 442
ny+n,—2

p_ 18670 U e

T 5y/1/20 1 1/20  21%0.316

"'to.025,(38) = —2.02

~» no sufficient evidence to claim that there is a difference in the average amount spent on weekends and
weekdays.

10.51 Two sets of elementary schoolchildren were taught to read by using different methods, 50 by
each method. At the conclusion of the instructional period, a reading test yielded the results
v, =74y, =715 =9,and 5, = 10.

a What is the attained significance level if you wish to see whether evidence indicates a
difference between the two population means?

b What would you conclude if you desired an a-value of .05?

a. Let the attained significant level be o = 0.05

b.
Ho:py —pp=0vs Hy i puy — iy #0
~2 _ (ny—1)s2+(n,—1)s2
52 = u=ledin 1l _ g0 5
T A0 _ 5 1579

5/1/50+1/50 = 9.51x0.2
“t0.025,(98) = —1.98

= there no sufficient evidence to claim that there is a difference in the average scores of two methods.
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23 Variance

Assumption: {Y7,...,Y, } IID N(uy,0?)

0% > of; t > xa(n—1);
Hy:0*=0lvs H,: < 0%+ 0% vsRR= t>xi/2(n—1) 0rt<x§_a/2(n—1);
0? < o3; t<xi , (n—1);

ny 2
Ny, —Y —1)52
T_ 21:1( : ) _ (n 2)5 ~ x2(n —1), under H,
o )

where X2 (v) denotes the (1-a)-quantile.

23.1 Exercise

8.102 The ages of arandom sample of five university professors are 39, 54, 61, 72, and 59. Using this
information, find a 99% confidence interval for the population standard deviation of the ages
of all professors at the university, assuming that the ages of university professors are normally
distributed.

X (Y;-Y,)? _
I _ (n=Dal Yin—1=4)

o2 o2

S (Y, = ¥,)2 = 25— 1)

~T = 144.5001 = 4 /0

3_00574 = 0.20699 and X8.005,4 = 14.8602

144.5001 x 4/14.8602 = 38.89587, 144.5001 x 4/0.20699 = 2792.407
~o? € [38.89587,2792.407]

=
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24 The p-values
Let two-sided « level Z-test of Hy: 0 =6, vs H, : 0 # 6, reject H if

-0
|Z: a_o|>za/2

1. Asa T, Za )2 1, so RR expands.
2. Expands or shrink RR,, such that RR, just exclude Z. Denote this a as p.

3. This p is the smallest o could be if we want still rejecting H,,

Definition 11.6.2: In a HT, the a-level rejection regions RR, are said to be nested, if RR, C RR,, when
a < o, namely, the rejection region expands as o 1.

Definition 11.6.3: In a HT with nested rejection regions RR,,, the p-value is defined as the random variable
p=min{a:T € RR,}. Because T is statistic, so p is also a statistic.

Let u € [0,1], p=min{a: T € RR,} >u <= T ¢ RR,. Then Py (p >u) =P, (T ¢ RR,) =1—u.
Hence Py (p < u) = u, it is a Uniform(0,1) distribution.

Hence an observed p-value can be interpreted as: the probability of the test statistic being more extreme than
the observed value under HO.

24.1 Exercise

Provide an elementary explanation of p-value to someone with little statistical training.
Answer:

Under HO, the probability of the test statistic being more extreme than the observed value. For example, if
we think x = y, then x - y should be 0. If we observed x - y = ¢, ¢ > 0, then the probability of all possible
results of x - y belong to [c, oo].
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25 Optimal: UMP

The goodness of a test is measured by «a and [, the probabilities of type I and type II errors, respectively.
Typically, the value of « is chosen in advance and determines the location of the rejection region. A related
but more useful concept for evaluating the performance of a test is called the power of the test. Basically,
the power of a test is the probability that the test will lead to rejection of the null hypothesis.

Suppose that W is the test statistic and RR is the rejection region for a test of a hypothesis involving the
value of a parameter 6. Then the power of the test, denoted by power () , is the probability that the test
will lead to rejection of H, when the actual parameter value is 8 . That is,

power(§) = P(W in RR when the parameter value is 6)

Relationship Between Power and f: If 6, is a value of 6 in the alternative hypothesis H, , then

power(@a) =1- B(Ha)

Selecting tests with the smallest possible value of 3 for tests where «, the probability of a type I error, is a
fixed value selected by the researcher.

THEOREM 10.1 Neyman-Pearson Lemma: Suppose that we wish to test the simple null hypothesis
H, : 0 = 0, versus the simple alternative hypothesis H, : § = 0,, based on a random sample Y;,Y;,....Y,,
from a distribution with parameter 6. Let L(#) denote the likelihood of the sample when the value of the
parameter is §. Then, for a given «, the test that maximizes the power at 6, has a rejection region, RR,
determined by

The value of k is chosen so that the test has the desired value for a.. Such a test is a most powerful « - level
test for H, versus H,,.

Uniformly most powerful test
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EXAMPLE 10.22

Solution

Suppose that Y represents a single observation from a population with probability
density function given by

0yl 0<y <,

f(y|9)={

0, elsewhere.
Find the most powerful test with significance level @ = .05 to test Hy: 0 = 2 versus
H,.0 =1.

Because both of the hypotheses are simple, Theorem 10.1 can be applied to derive
the required test. In this case,

L®o) _ fOyl6) 2y
L®)  f(l6a)  (1)y°
and the form of the rejection region for the most powerful test is

2y < k.

=2y, forO0 <y <1,

Equivalently, the rejection region RR is {y < k/2}. Or because k/2 = k*, a constant,
the rejection region is RR: {y < k*}.
Because o = .05 is specified, the value of k* is determined by

k*
.05= P inRRwhen =2) = P(Y <k"whenf =2) = / 2y dy = (k%)%
0

Therefore, (k*)? = .05, and the rejection region of the most powerful test is
RR:{y < +.05 = .2236}.

Among all tests for Hy versus H, based on a sample size of 1 and with « fixed at
.05, this test has the largest possible value for power(6,) = power(1). Equivalently,
among all tests with o = .05 this test has the smallest type II error probability when
B(6,) is evaluated at 6, = 1. What is the actual value for power(6) when 8 = 1?

power(l) = P(Y in RR when§ = 1) = P(Y < .2236 when 6 = 1)
2236
= f (1) dy = .2236.
0

Even though the rejection region {y < .2236} gives the maximum value for power(1)
among all tests with « = .05, we see that (1) = 1 — .2236 = .7764 is still very
large.
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EXAMPLE 10.23

Solution

Suppose that Yy, Ys, ..., Y, constitute a random sample from a normal distribution
with unknown mean & and known variance 2. We wish to test Hy : 1 = 1o against
H, :n > po for a specified constant py. Find the uniformly most powerful test with
significance level .

We begin by looking for the most powerful a-level testof Hy : u = o versus H) : . =
W, for one fixed value of p, that is larger than 1. Because

f(Y|M)=<#>€Xp|:L_M)2i| —0 <y <00
O'\/E 202 ’ ’

we have

L) = fO 1) falm) - fnln) = (L>nexp —XH:M :
o2 202

[Recall that exp(w) is simply e" in another form.] Because both Hy and H are simple
hypotheses, Theorem 10.1, implies that the most powerful test of Hy : ;© = 1 versus
H} :u = g is given by

i=I

L (o)
L(pqa)

< k,

which in this case is equivalent to

1\ n (i — 1o)?
<0 2n) =P [_ - 202 ] <k
( 1 )" exp| - 5 i — 1a)? '
o2 P i=l 202

This inequality can be rearranged as follows:

1 n n
exp {_F |:Z(Yi — 1o)* = Y (i — M){“ <k.
i=1 i=1
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Taking natural logarithms and simplifying, we have
1 & 4
552 [;(yi — 1o)* — ;()’i - Ma)2i| < In(k)
D= ) =Y (i — o)’ > =207 In(k)
i=I i=1

Z v —2nyuo + nud — Z V2 420y, — np? > —20% In(k)

n
i=1 i=1

—202In(k) — nu% + nui
2n

V(g — o) >

or, since i, > [y,

_ —20%In(k) — nud +np?
” 2n( g — o) '
Because o2, n, [, and p, are all known constants, the quantity on the right-hand
side of this inequality is a constant—call it k’. Therefore, the most powerful test of
Hy: = po versus HY : u = pu, has the rejection region given by
RR = {y > k'}.
The precise value of k" is determined by fixing « and noting that
o = P(Y in RR when pt = j0)
= P(Y > k' when . = o)

(Y=o K=o

=7 ( N o/ﬁ)
= P(Z>nlk' = po)fo).

Because, under Hj, Z has a standard normal distribution, P(Z > z,) = « and the
required value for k" must satisfy

Vn(k' = jo)/o = z4, orequivalently, k' = g+ z40/+/n.

Thus, the a-level test that has the largest possible value for power(6,) is based on
the statistic Y and has rejection region RR = {y > 1o + z40/+/n}. We now observe
that neither the test statistic nor the rejection region for this «-level test depends on
the particular value assigned to u,. That is, for any value of u, greater than pg, we
obtain exactly the same rejection region. Thus, the a-level test with the rejection region
previously given has the largest possible value for power(u,,) for every p, > wo. Itis
the uniformly most powerful|test for Hy : o = 1o versus H, : ;> po. This is exactly
the test that we considered in Section 10.3.

The Neyman—Pearson lemma is useless if we wish to test a hypothesis about a single parameter # when the
sampled distribution contains other unspecified parameters.

Assumptions:

1. Hy:0=0,vs H,:0=190,

2. Level: «

3. L(#) likelihood function, 8 € {6,,0,}
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25.1 Exercise

10.96 Suppose Y is a random sample of size 1 from a population with density function
6y, 0<y<1,
. elsewhere,

f(yIB):i

where ¢ > 0.

a Sketch the power function of the test with rejection region: ¥ > .5.

b Based on the single observation Y, find a uniformly most powerful test of size « for testing
Hy:0 = 1 versus H,:6 > 1.

a.

1
Py(y € RR) = Py(y > 0.5) = [ 6y’ tdy=1—(0.5)°
.5

=}

pw function

05 07 09
|

theta
b.
L(6y) _ L(1)
L6, — O y% 1

Let T = eaf;(é) r <k, then Py (y > (ﬁ)l/((h*l) =c) =«

1
'.'Peo(y > (ﬁ)l/(eafl) = C) = f9y071 =1l—c=«

(&
~RR =y >1—«, not depend on a specific 6,

~y > 1 — « is a uniformly most powerful (UMP) decision rule.
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26 Likelihood ratio test

The procedure works for simple or composite hypotheses and whether or not other parameters with unknown
values are present.

A likelihood Ratio Test: H;: © € )y v.s. H, : © € Q, employs A as a test statistic, and the rejection
region is determined by A < k.

L@y B
L@ max L(©)

Let L(QO) denote the maximum (actually the supremum) of the likelihood function for all © € €,. That
is, L()) = max L(©). Notice that L(€),) represents the best explanation for the observed data for all
€8

O € ©, and can be found by using methods similar to those used in Section 9.7. Similarly, L(Q) = max L(©)
€

represents the best explanation for the observed data for all © € Q = Q, U Q,. If L(Q,) = L(f), then a
best explanation for the observed data can be found inside €2, and we should not reject the null hypothesis

H, : © € Qy. However, if L();) < L(Q), then the best explanation for the observed data can be found
inside €2,, and we should consider rejecting H,, in favor of H,. A likelihood ratio test is based on the ratio

L(Q)/L(SY).

EXAMPLE 10.24 Suppose that Yi, Y5, ..., Y, constitute a random sample from a normal distribution
with unknown mean p and unknown variance o'>. We want to test Hy : it = (1 Versus
H, :pn > po. Find the appropriate likelihood ratio test.

Solution In this case, ® = (u, o?). Notice that  is the set {(ig, 02):0% > 0}, Q, =
{(w,0?) 10 > o, 0% > 0}, and hence that Q@ = Qo U Q, = {(n, 020 > o,
o2 > 0}. The constant value of the variance o2 is completely unspecified. We must
now find L($2) and L().
For the normal distribution, we have

5 1 n 1 n/2 n (yi_u)z
vor=tuo=(z) () ew|-L 0]
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Restricting u to €2¢ implies that © = g, and we can find L(€) if we determine
the value of o2 that maximizes L (i, o%) subject to the constraint that & = p(. From
Example 9.15, we see that when ju = p the value of o> that maximizes L (i1, 0%) is

1 n
A2 § : 2
65 = — P .
0o — : 1()’z //LO)

Thus, L(£2y) is obtained by replacing u with 19 and o> with 62 in L(u, o), which
gives

A 1 . 1 n/2 n (M-Mo)z 1 n 1 n/2 o
L(QO)—(E) <0_02) exp[—; 262 _<\/ﬂ) (0—02> c

We now turn to finding L(€). Asin Example 9.15, itis easiertolook atIn L(u, o?),

n n 1
In[L(, 6%)] = = Ino? — S In2r — —— D i = w)’

Taking derivatives with respect to u and o2, we obtain

ofln[L(u, oM} _ 1 <
T = ;;(yi _M)s

d{In[L (i, o)1} n 1
e =~ (Ga) r o

We need to find the maximum of L(u, o?) over the set @ = {(i, 02 > Lo,
o2 > 0}. Notice that

oL, 02)/8u <0, if u>7y,
AL(u, 02)/dpn =0, ifu=y,
AL(u, 02)/dp > 0, ifu<y.

Thus, over the set Q@ = {(i, 62): it > o, o> > 0},In L(, o?) [and also L(i, 02)]
is maximized at [t where

N R ity > o,
o, if y < po.

Just as earlier, the value of o2 in  that maximizes L(u, 02), is
»_ Iy 2
62 ==% =i’
i=1

L(S2) is obtained by replacing p with & and o with 62, which yields

A 1 "1 n/2 - (Yi_ﬂ)z 1 "1 " —n/2
va=( =) () exp[‘é s =) () o
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Thus,
Lo L&) _ (62)”/2
L)\
_ n/2
S i —y)? -
S e B
1, if y < po.

Notice that A is always less than or equal to 1. Thus, “small” values of A are those

less than some k < 1. Because
n

D 0=’ =Y [ =N+ T — uol
i=1 i=1
=> i =9 +n@F - o)’
i=1
if k < 1, it follows that the rejection region, A < k, is equivalent to
n =2
21 (i =) < K2 =

Yoo (i — mo)?
Z,r'lzl(Yi - y)z <K
im0 =2+ — po)?
1
"G — B < k.
L
> i i = 3)?
This inequality in turn is equivalent to
n(y—ﬂo)z - l—l:k”
i i =K
n(y — 10)’ "
> (n— Dk

1 1 —
m ;()’z -Y)

or, because y > g when A < k < 1,

M > /(n — DK",

where
1 n
2 _ =2
ST=-7 ;:1 i = )"

Notice that «/n(Y — j10)/S is the ¢ statistic employed in previous sections. Conse-
quently, the likelihood ratio test is equivalent to the 7 test of Section 10.8.
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26.1 Exercise

10.102 Let Y, Y,,...,Y, denote a random sample from a Bernoulli-distributed population with
parameter p. That is,

p(yilp)=p il —p), v, =0, 1.

a Suppose that we are interested in testing Hy : p = po versus H, : p = p,, where py < p,.

L(po) _ [Po(l - pa}]z” (1 - Pn)”

L(pu) (1 - PO)Pu 1 - Pa
il Argue that L(po)/L(p,) < k if and only if }_'_, y; > k* for some constant k*.
iii  Give the rejection region for the most powerful test of Hy versus H,.

i Show that

b Recall that 3 ' | ¥; has a binomial distribution with parameters n and p. Indicate how
to determine the values of any constants contained in the rejection region derived in part
[a(iii)].

¢ Is the test derived in part (a) uniformly most powerful for testing Hy: p = po versus
H,:p > py? Why or why not?

“L(p) = p=¥i(1 = p)n v

_ L(py) _ py " (l-pg)" TV (1-p,) 1-pg \n
T =105 = Sy s = Gl =" (52

T = (p()(l_pa )Zy7<1 Po) <k

Pq(1-Dg)

() = 3 y; In(25=2e3) 4 n In({=2

23y, > (In(k) — nin( go))(m(%))_l _

a (1-po)

) < In(k)

iii.
B (T < ko) = Py (y; > k)
~RRis Yy, > k*
b.
Py (T <kg) =Py, (> y; > k") = a, 3"y, is binomial distribution with parameters n and p,

C.

Because Py (>_y; > k*) = a can solved the value of £, therefore RR not depend on p,, and it is a uniformly
most powerful (UMP) decision rule.
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10.111  Suppose that we are interested in testing the simple null hypothesis Hy:0 = 6, versus the
simple alternative hypothesis H, : 6 = 6,. According to the Neyman—Pearson lemma, the test
that maximizes the power at 6, has a rejection region determined by

L(6)
<
L(6.)
In the context of a likelihood ratio test, if we are interested in the simple H, and H,, as stated,
then Q¢ = {6b}, 2, = {6,}, and Q = {6, 6,,}.

a Show that the likelihood ratio A is given by

B L(6) B 1
= = Lo
max{L(®), LO)} {1’ (® )}
L ()
b  Argue that A < k if and only if, for some constant k',
L
(90) - kl‘
L(6,)

¢ What do the results in parts (a) and (b) imply about likelihood ratio tests when both the
null and alternative hypotheses are simple?

a.
ggg?L(@o) < géaefL(ﬂa)
)\ = L(6,) — 1
- max[L(6),L(6,)] ~ max[1,L(6,)/L(6)]
b.
A= mrreoyzeg) = minfl, L(0g)/L(6,)]

it A <k, then L(6,)/L(8,) should be also smaller than some value k’

if g <k <=1

C.

LRT coincides with the test given in the Neyman-Pearson Lemma, namely, LRT is the most powerful test
in this case.

10.108 Suppose that X, X5, ..., X,,,, Y1, Ya, ..., Y,,,and Wy, W5, ..., W, are independent random
samples from normal distributions with respective unknown means 41, jt2, and 3 and vari-
ances 012, 022, and 032.

a Find the likelihood ratio test for Hy: 0} = 0] = o7 against the alternative of at least one

inequality.
b Find an approximate critical region for the test in part (a) if 1y, n», and ns are large and
o = .05.
a.

Because for normal distribution

o) = —= exp(= )
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“L(puys pg, i, 03,03, 03) = H fluy,0q) Hf<ﬂ2a o5) Hf(ﬂsa 03)
i=1 i=1 i=1
M=) Xy —pe)® D (wy — pug)?

(nq+ngy+ng) ( ! T2 3

) —— o exp | — — —
Ny Noy N3 2 2 2
0,'05%04 207 2075 203

2 2 2
(n1+7no+n3) 1 o1y gny 0373
) Fr g ©XD
ot onros? 202 202 202
1 02703 1 2 3

9l 5l
3 3

g(/u’la /‘27:“‘370%3 0—%7 Ug) =In (L(NDM%M.‘_’,? J%aag,ag))

= (ny + 3 + 1) In(——) — 2 1n(03) — 22 1n(02) — "3 In(o2)

Vor 2 2 2
> (z; *Nl)Z >y *HQ)Z > (w; —M3)2

ny na n3

2 - 2 - 2
207 205 207%

L2 2 2
Under H : 0y = 05 = 03

2 9o 9 Swy—p)? Yy —po)? Yo (w; — pg)?
Ol gy 13, 07,05,05) 1y g+ 1 LM na ns

Oo? 202 20 + 204 + 203

=0

20? = (Y(x — ) + ;(yz — pig)? + Yo (w; — p13)?)/ (ny + ng + 13)

ny 3

Under H, : 0%,0%,0% at least one inequality

E(zi7u1)2
. 34(#1#2#3705703705) M + nq _ 0
" 903 207 204
Y(@i—p)? > (yi—p2)? > (y;—3)?
n . . n n
o2 =1 and o2 and o2 are defined similar as 2 = 22 and g2 =22
1 ny 2 3 2 Ny 3 N
L(o? ) ne
S e V e G P
max L(0%2,03,03) 1/(011L1)U(21L2>Ugngd) oniinging)

If R <k, where the k, is chosen to ensure the level of a, we would reject H,,.

b.
s 2I(R) B\ 2(d—dy=3—1=2), x205(2) = 5.99
~—2In(R) > 5.99
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