
My learning notes of Math Statistics II

Yang Ge

2021 - January - 23, 15:53

Contents
1 Concepts 3

2 Estimation 3

3 Bias 4
3.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Variance 5
4.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Mean Squared Error (MSE) 7
5.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 Efficiency 10
6.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

7 Consistency 11
7.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

8 Constructing estimators 13
8.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

9 Estimation Under Parametric Models 14

10 MLE: Maximum likelihood estimator 15
10.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

11 Fisher information 18

12 Sufficiency 18
12.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

13 Optimal: MVUE 21
13.1 Exercise: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

14 Confidence Intervals 24

15 Pivotal 25
15.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

16 Z-Score 27
16.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1



CONTENTS Yang’s notes CONTENTS

17 Small-sample CI 29
17.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

18 CI for 𝜎2 31
18.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

19 Statistical Decision 32

20 Elements of statistical test 32
20.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

21 Large-sample Z-tests 35
21.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

22 Small-sample tests 37
22.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

23 Variance 41
23.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

24 The p-values 42
24.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

25 Optimal: UMP 43
25.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

26 Likelihood ratio test 48
26.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2



Yang’s notes 2 ESTIMATION

1 Concepts

1. Law of Large Numbers: 𝑋𝑛
𝑛 = ̄𝑌𝑛 = 1

𝑛
𝑛

∑
𝑖=1

𝑌𝑖 converges (in a suitable sense) to 𝑝 = 𝐸[𝑌𝑖] as 𝑛 → ∞

2. Central Limit Theorem: if n is large, the distribution of 𝑋𝑛 is approximately normal 𝑁(𝜇, 𝜎2)
3. Parameter: a numerical characteristic of a population distribution, often unknown.

4. Statistics: a numerical summary of sample depending on sample only and does NOT involve un-
known parameters. Mathematically, a quantity T is a statistics whenever it can be expressed as:
𝑇 = 𝑓(𝑌1, ..., 𝑌𝑛)

2 Estimation
Point estimation: a single value estimate of a parameter 𝜃 based on the sample. The statistic ̂𝜃 used to
estimate 𝜃 is called an estimator of 𝜃. Since an estimator is a statistic, it certainly does NOT contain any
unknown parameter, and is solely a function of the sample. Interval estimation: construct an interval based
on the sample, which hopefully contains the true parameter with certain quantified accuracy. Confidence
interval (frequentist), credible interval (Bayes)

We will assume:

• 𝜃: unknown parameter, taking value in a set Θ called parameter space (often a subset of ℝ).

• ̂𝜃: an estimator of 𝜃, which is a function of random sample (𝑌1, ..., 𝑌𝑛).
Quality of the estimator:
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Yang’s notes 3 BIAS

3 Bias
Compare the center of the distribution of ̂𝜃 with 𝜃.

𝐵𝑖𝑎𝑠( ̂𝜃; 𝜃) = 𝐸[ ̂𝜃] − 𝜃

Given an estimator ̂𝜃, the 𝐵𝑖𝑎𝑠( ̂𝜃; 𝜃) is a function of 𝜃 ∈ Θ. An estimator ̂𝜃 of 𝜃 is said to be unbiased, if
𝐵𝑖𝑎𝑠( ̂𝜃; 𝜃) = 0 for all 𝜃 in the parameter space Θ of interest. Unbiasedness is a desirable property, since it
says averagely speaking, the estimator captures the true parameter no matter where the latter is located.
For unbiasedness, it is important to ensure that 𝐸[ ̂𝜃] = 𝜃 for every possible 𝜃 of interest, not just for a single
value of 𝜃.

Proposition: if 𝐵𝑖𝑎𝑠( ̂𝜃; 𝜃) = 0, then 𝐵𝑖𝑎𝑠(𝑎 ̂𝜃; 𝑎𝜃) = 0, and 𝐵𝑖𝑎𝑠( ̂𝜃+𝑎; 𝜃+𝑎) = 0, and 𝐵𝑖𝑎𝑠(𝑎 ̂𝜃+𝑏 ̂𝜂; 𝑎𝜃+𝑏𝜂) = 0

3.1 Exercise

a. 𝐵( ̂𝜃; 𝜃) = 𝐸[ ̂𝜃] − 𝜃 = 𝑎𝜃 + 𝑏 − 𝜃 = (𝑎 − 1)𝜃 + 𝑏
b. When 𝐸[ ̂𝜃∗] = 𝜃, then 𝐵( ̂𝜃; 𝜃) = 𝐸[ ̂𝜃] − 𝜃 = 0.

∵𝐸[ ̂𝜃] = 𝑎𝜃 + 𝑏

∴𝐸[ ̂𝜃−𝑏
𝑎 ] = 𝜃

∴𝐸[ ̂𝜃∗ = ̂𝜃−𝑏
𝑎 ] = 𝜃 is an unbiased estimator.
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Yang’s notes 4 VARIANCE

4 Variance
Unbiasedness is NOT the only property we seek for. The variance of the estimator ̂𝜃 of 𝜃 to be:

𝑉 𝑎𝑟( ̂𝜃; 𝜃) = 𝑉 𝑎𝑟( ̂𝜃)

𝑆.𝐸.( ̂𝜃) = √𝑉 𝑎𝑟( ̂𝜃; 𝜃)

4.1 Exercise

Based on binomial distribution, 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝), 𝐵𝑖𝑎𝑠(𝑝; 𝐸[ ∑ 𝑌
𝑛 ]) = 0

𝐵𝑖𝑎𝑠(𝑉 (𝑌 ); 𝐸[𝑛𝑝𝑞]) = 0.

However, 𝐵𝑖𝑎𝑠(𝐸[𝑝2]; 𝐸[( ∑ 𝑌
𝑛 )2]) ≠ 0.

Let ∑ 𝑌 denoted as 𝑌 .

a.

For 𝜃 = 𝑛( 𝑌
𝑛 (1 − 𝑌

𝑛 )) = 𝑌 − 𝑌 2
𝑛

∵𝐸[𝜃] = 𝐸[𝑌 − 𝑌 2
𝑛 ] = 𝐸[𝑌 ] − 1

𝑛 𝐸[𝑌 2] = 𝑛𝑝 − 1
𝑛 𝐸[𝑌 2]

∵𝐸[𝑌 2] = 𝑉 (𝑌 ) + 𝐸[𝑌 ]2 = 𝑛𝑝𝑞 + 𝑛2𝑝2

∴𝐸[𝜃] = 𝑛𝑝 − 𝑝𝑞 − 𝑛𝑝2 = 𝑛𝑝(1 − 𝑝) − 𝑝𝑞 = 𝑝𝑞(𝑛 − 1) ≠ 𝑝𝑞𝑛
∴𝐵𝑖𝑎𝑠(𝑉 (𝑌 ); 𝐸[𝜃]) ≠ 0

b.

∵𝐸[𝜃] = 𝑝𝑞(𝑛 − 1)
∴𝐸[ 𝑛

𝑛−1 𝜃] = 𝑝𝑞(𝑛 − 1) 𝑛
𝑛−1 = 𝑛𝑝𝑞

∴𝜃∗ = 𝑛
𝑛−1 ∗ 𝑛 𝑌

𝑛 (1 − 𝑌
𝑛 ) is an unbiased estimator of V(Y)

a.

𝐸[ ̂𝜃3] = 𝐸[𝑎 ̂𝜃1 + (1 − 𝑎) ̂𝜃2] = 𝐸[𝑎 ̂𝜃1] + 𝐸[(1 − 𝑎) ̂𝜃2] = 𝑎𝐸[ ̂𝜃1] + (1 − 𝑎)𝐸[ ̂𝜃2] = 𝑎𝜃 + (1 − 𝑎)𝜃 = 𝜃
b.
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4.1 Exercise Yang’s notes 4 VARIANCE

Because independent, 𝑉 ( ̂𝜃3) = 𝑉 (𝑎 ̂𝜃1 + (1 − 𝑎) ̂𝜃2) = 𝑉 (𝑎 ̂𝜃1) + 𝑉 ((1 − 𝑎) ̂𝜃2) = 𝑎2𝑉 ( ̂𝜃1) + (1 − 𝑎)2𝑉 ( ̂𝜃2) =
𝑎2𝜎2

1 + (1 − 𝑎)2𝜎2
2

∵ 𝑑
𝑑𝑎 𝑉 ( ̂𝜃3) = 2(𝜎2

1 + 𝜎2
2)𝑎 − 2𝜎2

2
𝑑2

𝑑𝑎2 𝑉 ( ̂𝜃3) = 2(𝜎2
1 + 𝜎2

2) > 0

∴ 𝑑
𝑑𝑎 𝑉 ( ̂𝜃3) = 0 is the minimize point, and 𝑎 = 𝜎2

2
𝜎2

1+𝜎2
2

∵𝐶𝑂𝑉 (𝑎𝑈 + 𝑏𝑉 , 𝑐𝑌 + 𝑑𝑍) = 𝑎𝑐𝐶𝑂𝑉 (𝑈, 𝑌 ) + 𝑏𝑐𝐶𝑂𝑉 (𝑉 , 𝑌 ) + 𝑎𝑑𝐶𝑂𝑉 (𝑈, 𝑍) + 𝑏𝑑𝐶𝑂𝑉 (𝑉 , 𝑍)
∴𝐶𝑂𝑉 (𝑎 ̂𝜃1 + (1 − 𝑎) ̂𝜃2) = 𝑎(1 − 𝑎)𝐶𝑂𝑉 ( ̂𝜃1, ̂𝜃2) = 𝑎(1 − 𝑎)𝑐
∴𝑉 ( ̂𝜃3) = 𝑉 (𝑎 ̂𝜃1 + (1 − 𝑎) ̂𝜃2) = 𝑉 (𝑎 ̂𝜃1) + 𝑉 ((1 − 𝑎) ̂𝜃2) − 2𝐶𝑂𝑉 (𝑎 ̂𝜃1 + (1 − 𝑎) ̂𝜃2) = 𝑉 (𝑎 ̂𝜃1) + 𝑉 ((1 − 𝑎) ̂𝜃2) +
2𝑎(1 − 𝑎)𝑐
∵ 𝑑

𝑑𝑎 𝑉 ( ̂𝜃3) = 2(𝜎2
1 + 𝜎2

2 − 2𝑐)𝑎 − 2𝜎2
2 + 2𝑐, 𝑑2

𝑑𝑎2 𝑉 ( ̂𝜃3) = 2(𝜎2
1 + 𝜎2

2) − 4𝑐 = 2(𝑉 ( ̂𝜃1) + 𝑉 ( ̂𝜃2) + 2𝐶𝑂𝑉 ( ̂𝜃1, ̂𝜃2)) =
2𝑉 ( ̂𝜃1 + ̂𝜃2) > 0

∴ 𝑑
𝑑𝑎 𝑉 ( ̂𝜃3) = 0 is the minimize point, and 𝑎 = 𝜎2

2−𝑐
𝜎2

1+𝜎2
2−2𝑐
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Yang’s notes 5 MEAN SQUARED ERROR (MSE)

5 Mean Squared Error (MSE)
A measure of goodness of estimator combining both bias and variance:

𝑀𝑆𝐸( ̂𝜃; 𝜃) = 𝐸[( ̂𝜃 − 𝜃)2]

𝑀𝑆𝐸( ̂𝜃; 𝜃) = 𝐵𝑖𝑎𝑠( ̂𝜃; 𝜃)2 + 𝑉 𝑎𝑟( ̂𝜃; 𝜃)

If the estimator ̂𝜃 is unbiased. then 𝑀𝑆𝐸( ̂𝜃; 𝜃) = 𝑉 𝑎𝑟( ̂𝜃; 𝜃)

5.1 Exercise

𝑀𝑆𝐸( ̂𝜃) = 𝐸[( ̂𝜃 − 𝜃)2] (1)

= 𝐸[( ̂𝜃 − 𝐸( ̂𝜃) + 𝐵( ̂𝜃))2] (2)

= 𝐸[(( ̂𝜃 − 𝐸( ̂𝜃))2 + 𝐵( ̂𝜃)2 + 2𝐵( ̂𝜃)( ̂𝜃 − 𝐸( ̂𝜃))] (3)

= 𝐸[(( ̂𝜃 − 𝐸( ̂𝜃))2] + 𝐸[𝐵( ̂𝜃)2] + 𝐸[2𝐵( ̂𝜃)( ̂𝜃 − 𝐸( ̂𝜃))] (4)
= 𝑉 ( ̂𝜃) + 𝐵( ̂𝜃)2 + 2𝐵( ̂𝜃)𝐸[( ̂𝜃 − 𝐸( ̂𝜃))] (5)
= 𝑉 ( ̂𝜃) + 𝐵( ̂𝜃)2 (6)

a.

∵𝑀𝑆𝐸( ̂𝜃) = 𝑉 ( ̂𝜃) + 𝐵( ̂𝜃)2

∴ if 𝐵( ̂𝜃) = 0, 𝑀𝑆𝐸( ̂𝜃) = 𝑉 ( ̂𝜃)
b.

if 𝐵( ̂𝜃) > 0, 𝑀𝑆𝐸( ̂𝜃) = 𝑉 ( ̂𝜃) + 𝐵( ̂𝜃)2 > 𝑉 ( ̂𝜃)

7



5.1 Exercise Yang’s notes 5 MEAN SQUARED ERROR (MSE)

a.

∵ ̂𝜃 = 𝑚𝑎𝑥(𝑌1, 𝑌2, ..., 𝑌𝑛)

∴𝐹( ̂𝜃 ≤ 𝑥) = 𝑃(𝑌𝑖 ≤ 𝑥)𝑛 = (
𝑥
∫
0

𝛼 𝑦𝛼−1

𝜃𝛼 𝑑𝑦)𝑛 = ( 𝑥𝛼
𝜃𝛼 )𝑛, 𝑓( ̂𝜃) = 𝐹( ̂𝜃 ≤ 𝑥)′ = 𝑛𝛼𝑥𝑛𝛼−1

𝜃𝑛𝛼 , 𝑥 ∈ [0, 𝜃]

∵𝐵( ̂𝜃) = 𝐸[ ̂𝜃] − 𝜃 =
𝜃

∫
0

𝑥 𝑛𝛼𝑥𝑛𝛼−1
𝜃𝑛𝛼 𝑑𝑥, 𝑥 ∈ [0, 𝜃]

= 𝑛𝛼 1
𝜃𝑛𝛼

1
𝑛𝛼+1 𝑥𝑛𝛼+1∣

𝜃

0
− 𝜃 = 𝑛𝛼 1

𝑛𝛼+1 𝜃 − 𝜃 ≠ 0

∴ the estimator is biased.

b.

∵𝐸[ ̂𝜃] = 𝑛𝛼 1
𝑛𝛼+1 𝜃

∴𝐸[ 𝑛𝛼+1
𝑛𝛼

̂𝜃] = 𝜃, and it is the unbiased estimator.

c.

𝑀𝑆𝐸( ̂𝜃) = 𝐵( ̂𝜃)2 + 𝑉 𝐴𝑅( ̂𝜃) (7)

= (𝑛𝛼 1
𝑛𝛼 + 1𝜃 − 𝜃)2 + 𝐸[ ̂𝜃2] − (𝐸[ ̂𝜃])2 (8)

= (𝑛𝛼 1
𝑛𝛼 + 1𝜃 − 𝜃)2 +

𝜃

∫
0

𝑥2 𝑛𝛼𝑥𝑛𝛼−1

𝜃𝑛𝛼 𝑑𝑥 − (𝑛𝛼 1
𝑛𝛼 + 1𝜃)2 (9)

= ( −𝜃
𝑛𝛼 + 1)2 + 𝑛𝛼 1

𝑛𝛼 + 2𝜃2 − ( 𝑛𝛼
𝑛𝛼 + 1𝜃)2 (10)

= 2
(𝑛𝛼 + 1)(𝑛𝛼 + 2)𝜃2 (11)
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5.1 Exercise Yang’s notes 5 MEAN SQUARED ERROR (MSE)

For 𝐵(𝑛𝑌(1)):
∵𝑃(𝑌(1) ≥ 𝑥) = 𝑃(𝑚𝑖𝑛(𝑌1, 𝑌2, 𝑌3...𝑌𝑛) ≥ 𝑥) = 𝑃(𝑌𝑖 ≥ 𝑥)𝑛

∴𝐹(𝑌(1)) = 1 − 𝑃(𝑌(1) ≥ 𝑥) = 1 − 𝑃(𝑌𝑖 ≥ 𝑥)𝑛 = 1 − (1 − 𝑃(𝑌𝑖 ≤ 𝑥))𝑛

∵𝑌𝑖 ∼ 𝑒𝑥𝑝(𝜃), 𝐹(𝑌𝑖) = 1 − 𝑒− 𝑥
𝜃

∴𝐹(𝑌(1)) = 1 − (1 − 1 + 𝑒− 𝑥
𝜃 )𝑛 = 1 − 𝑒− 𝑛𝑥

𝜃 , and 𝑓(𝑦(1)) = −𝑛(𝑒− 𝑥
𝜃 )𝑛−1𝑒− 𝑥

𝜃 (− 1
𝜃 )

∴𝐸[𝑛𝑌(1)] = 𝑛
+∞
∫
0

𝑥𝑓𝑥(𝑌(1)) = 𝑛 𝜃
𝑛 = 𝜃

For 𝑀𝑆𝐸(𝑛𝑌(1)):

𝑀𝑆𝐸(𝑛𝑌(1)) = 𝐵(𝑛𝑌(1)) + 𝑉 (𝑛𝑌(1)) (12)
= 𝑛2𝑉 (𝑌(1)) (13)
= 𝑛2(𝐸[𝑌 2

(1)] − 𝐸[𝑌(1)]2) (14)

= 𝑛2(
+∞

∫
0

𝑥2𝑓𝑥(𝑌(1)) − ( 𝜃
𝑛)2) (15)

= 𝑛2(2( 𝜃
𝑛)2 − ( 𝜃

𝑛)2) (16)

= 𝜃2 (17)
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Yang’s notes 6 EFFICIENCY

6 Efficiency
Give two estimators ̂𝜃1 and ̂𝜃2 of the same parameter 𝜃, the efficiency of ̂𝜃1 relative to ̂𝜃2 is defined as (note
the reversed order in the ratio):

𝑒𝑓𝑓(𝜃1, 𝜃2) = 𝑀𝑆𝐸(𝜃2)
𝑀𝑆𝐸(𝜃1)

6.1 Exercise

∵𝑒𝑓𝑓( ̂𝜃1, ̂𝜃2) = 𝑀𝑆𝐸( ̂𝜃2)
𝑀𝑆𝐸( ̂𝜃1)

∵𝑀𝑆𝐸( ̂𝜃1) = 𝜃2

∵𝑀𝑆𝐸( ̂𝜃2) = 𝐵( ̂𝜃2)2 + 𝑉 ( ̂𝜃2), and 𝐸[ ̂𝜃2] = 𝐸[ ̄𝑌 ] = 𝜃, 𝑉 ( ̂𝜃2) = 𝑉 ( ̄𝑌 ) = 𝜎2
𝑛 = 𝜃2

𝑛

∴𝑒𝑓𝑓( ̂𝜃1, ̂𝜃2) = 𝑀𝑆𝐸( ̂𝜃2)
𝑀𝑆𝐸( ̂𝜃1) =

𝜃2
𝑛
𝜃2 = 1

𝑛

10



Yang’s notes 7 CONSISTENCY

7 Consistency
Convergence: For non-random sequence, A sequence of non-random numbers 𝑥𝑛 ∈ ℝ is said to converge to
𝑥 ∈ ℝ, if for any fixed 𝜖 > 0 for all sufficiently large n, we have |𝑥𝑛 − 𝑥| ≤ 𝜖. For a sequence of random
variables 𝑋𝑛 is said to converge in probability to a constant x if for any fixed 𝜖 > 0 as 𝑛 → ∞, we have
𝑃(|𝑋𝑛 − 𝑥| ≤ 𝜖) = 𝑃 (𝑥 − 𝜖 ≤ 𝑋𝑛 ≤ 𝑥 + 𝜖) → 1, denoted as 𝑋𝑛

𝑃→ 𝑥.

Consistency: An estimator ̂𝜃𝑛 (strictly, a sequence of estimators) of 𝜃 based on a sample of size n is said to
be consistent.

Theorem 8.3.7: if 𝑀𝑆𝐸( ̂𝜃𝑛; 𝜃) 𝑃→ 0 for all 𝜃 ∈ Θ, then ̂𝜃𝑛 is consistent for 𝜃

Proposition: 1. 𝑋𝑛 + 𝑌𝑛
𝑃→ 𝑥 + 𝑦; 2. 𝑋𝑛 × 𝑌𝑛

𝑃→ 𝑥 × 𝑦; 3. 𝑋𝑛/𝑌𝑛
𝑃→ 𝑥/𝑦 if 𝑌𝑛, 𝑦 ≠ 0); 4. If g is a continuous

function, then 𝑔(𝑋𝑛) 𝑃→ 𝑔(𝑥), and could be generalized to multivariate continuous function.

7.1 Exercise

∵ lim
𝑛→∞

𝑓(𝑛) = 𝑋𝑛 = 𝑥

∴𝑃(|𝑓(𝑛) − 𝑥| < 𝜖) =

⎧{{{{
⎨{{{{⎩

𝑃(1 − 𝑥
𝑓(𝑛) < 𝜖

𝑓(𝑛) )
𝑛→+∞⟶ 𝑃(1 − 1 < 𝜖

𝑥 ) 𝑃→ 1 , if lim
𝑛→∞

𝑓(𝑛) > 0 & 𝜖 > 0

𝑃(1 − 𝑥
𝑓(𝑛) > 𝜖

𝑓(𝑛) )
𝑛→+∞⟶ 𝑃(1 + 1 > 𝜖

𝑥 ) 𝑃→ 1 , if lim
𝑛→∞

𝑓(𝑛) < 0 & 𝜖 > 0

𝑃(𝑓(𝑛) − 𝑥 < 𝜖) 𝑛→+∞⟶ 𝑃(0 − 0 < 𝜖) 𝑃→ 1 , if lim
𝑛→∞

𝑓(𝑛) = 0 & 𝜖 > 0

∵𝑃(|𝑌(1) − 𝜃| ≤ 𝜖) = 𝑃(𝜃 − 𝜖 ≤ 𝑌(1) ≤ 𝜃 + 𝜖) = 𝐹(𝜃 + 𝜖) − 𝐹(𝜃 − 𝜖) = (1 − 𝜃−𝜖
𝜃 )𝑛 − (1 − 𝜃+𝜖

𝜃 )𝑛 = ( 𝜖
𝜃 )𝑛 − ( −𝜖

𝜃 )𝑛

∴𝑃(|𝑌(1) − 𝜃| ≤ 𝜖) = 0 when n is an even number.

∴𝑃 (|𝑌(1) − 𝜃| ≤ 𝜖) = 2( 𝜖
𝜃 )𝑛 𝑛→+∞⟶ 0 when n is an odd number and 0 ≤ 𝜖 < 𝜃.

11



7.1 Exercise Yang’s notes 7 CONSISTENCY

∵𝐸[𝑦] =
1

∫
0

𝑦𝜃𝑦𝜃−1 𝑑𝑦 = 𝜃
𝜃+1

∴𝐵( ̄𝑌 , 𝜃
𝜃+1 ) = 0

∵𝑉 (𝑦) = 𝜃
(𝜃+2)(𝜃+1)2

∴𝑉 ( ̄𝑌 ) = 𝑉 (𝑦)
𝑛

∴𝑀𝑆𝐸( ̄𝑌 , 𝜃
𝜃+1 ) 𝑛→+∞⟶ 0

∴ ̄𝑌 is a consistent estimator of 𝜃
𝜃+1

12



Yang’s notes 8 CONSTRUCTING ESTIMATORS

8 Constructing estimators
By Method of Moments

Sample’s kth moment is defined as 𝑚𝑘 = 𝑚𝑘.𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑌 𝑘
𝑖 . It is statistics. 𝑚𝑘

𝑃→ 𝐸[𝑌 𝑘
𝑖 ] = 𝜇𝑘, 𝑘 = 1, 2, ....

Generally:

1. Compute the population moments: 𝜇𝑘 = 𝜇𝑘(𝜃1, ..., 𝜃𝑟) = 𝐸[𝑌 𝑘
1 ], 𝑘 = 1, ..., 𝑟 which depend on 𝜃1, ..., 𝜃𝑟.

2. Establish a system of equations 𝜇𝑘(𝜃1, ..., 𝜃𝑟) = 𝑚𝑘 = 1
𝑛

𝑛
∑
𝑖=1

𝑌 𝑘
𝑖 , 𝑘 = 1, ..., 𝑟.

3. Solve the system of equations, namely, express 𝜃1, ..., 𝜃𝑟 in terms of 𝑚1, ..., 𝑚𝑟, to obtain the estimators.

8.1 Exercise

∵𝐸[𝑦] =
3

∫
0

𝑦 𝛼𝑦𝛼−1

3𝛼 𝑑𝑦 = 𝛼
3𝛼 ( 1

𝛼+1 𝑦𝛼+1)∣
3

0
= 3𝛼

𝛼+1

∴ ̂𝜃 = 3𝛼
𝛼+1

∴𝛼 = ̂𝜃
3− ̂𝜃

∵𝑚𝑡 = exp(𝜇𝑡 + 𝑡2𝜎2
2 )

∴𝑚1 = exp(𝜇 + 𝜎2
2 ) and 𝑚2 = exp(2𝜇 + 2𝜎2)

∵ ̄𝑌 𝐿.𝐿.𝑁⟶ 𝜇, and 𝜎̂2 𝐿.𝐿.𝑁⟶ 𝜎2

∴𝜇 = exp( ̄𝑌 + 𝜎̂2
2 )

∴𝜎2 = 𝑚2 − 𝑚2
1 = exp(2 ̄𝑌 + 2𝜎̂2) − 2 exp( ̄𝑌 + 𝜎̂2

2 )

13



Yang’s notes9 ESTIMATION UNDER PARAMETRIC MODELS

9 Estimation Under Parametric Models
Let Θ be a subset of ℝ. Let 𝐹𝜃 be a probability distribution which is uniquely determined by the value
𝜃 ∈ Θ. Then the collection (𝐹𝜃 ∶ 𝜃 ∈ Θ) is called a parametric family of distributions parameterized by 𝜃 in
parameter space Θ.

Issues: If no other information of a parametric family of distributions about Y is known, then one value
of 𝜃 does NOT determine one unique distribution. In a parametric family, while a single parameter CAN-
NOT correspond to multiple distributions, it can happen that multiple parameters correspond to the same
distribution (in this case we say the parameter is not identifiable).

How is a parametric family used for statistical inference?

Idea: Suppose we have IID sample 𝑌1, ..., 𝑌𝑛 from one distribution 𝐹𝜃 of the family, but we do not know
which 𝜃. We need to construct an estimator ̂𝜃 based on the sample, so that the particular distribution 𝐹 ̂𝜃
fits the sample well.

14



Yang’s notes10 MLE: MAXIMUM LIKELIHOOD ESTIMATOR

10 MLE: Maximum likelihood estimator
Likelihood function 𝐿(𝜃) = 𝐿(𝜃; 𝑌1, ..., 𝑌𝑛) = 𝑝(𝑌1; 𝜃) × ... × 𝑝(𝑌𝑛; 𝜃) or 𝐿(𝜃) = 𝑓(𝑌1; 𝜃) × ... × 𝑓(𝑌𝑛; 𝜃).
A likelihood function is the joint PMF/PDF. The maximum likelihood estimator (MLE) defined as ̂𝜃 =
arg max

𝜃∈Θ
𝐿(𝜃), that is the 𝜃 maximizing the likelihood function. If multiple maximizers exist. choose one of

them. The solution ̂𝜃 is a statistics since it only depends on (𝑌1, ...𝑌𝑛). Choose the parameter which makes
the sample most probable.

Since the logarithm function ln is strictly increasing, MLE can be replaced by ̂𝜃 = arg max
𝜃∈Θ

ln 𝐿(𝜃). Maxi-
mizing the log likelihood ℓ(𝜃) = ln 𝐿(𝜃) is often easier.

ℓ(𝜃) = ln 𝐿(𝜃) =
𝑛

∑
𝑖=1

ln 𝑓(𝑌𝑖; 𝜃)

10.1 Exercise

∵𝐿(𝜃) = (2𝑦1
𝜃 𝑒− 𝑦2

1
𝜃 )...(2𝑦𝑛

𝜃 𝑒− 𝑦2𝑛
𝜃 )

= (𝜃)−𝑛2𝑛 ∏ 𝑦𝑖𝑒− ∑ 𝑦2
𝑖

𝜃

∴ℓ(𝜃) = 𝑙𝑛(𝐿(𝜃)) = −𝑛𝑙𝑛(𝜃) + 𝑛𝑙𝑛(2) + 𝑙𝑛(∏ 𝑦𝑖) + (− 1
𝜃 ) ∑ 𝑦2

𝑖

∴ℓ′(𝜃) = − 𝑛
𝜃 + 0 + 0 + 1

𝜃2 ∑ 𝑦2
𝑖 = 0

= 1
𝜃 ( 1

𝜃 ∑ 𝑦2
𝑖 − 𝑛) = 0

∴ ̂𝜃 = ∑ 𝑦2
𝑖

𝑛

a.

∵𝐸[𝑝(𝑦|𝑝)] = 1
𝑝 for geometric probability

∴𝜇1 = 1
𝑝

15



10.1 Exercise Yang’s notes10 MLE: MAXIMUM LIKELIHOOD ESTIMATOR

∴𝑝 = 1
𝜇1

b.

𝐿(𝑝) = 𝑝(1 − 𝑝)𝑦1−1𝑝(1 − 𝑝)𝑦2−1...𝑝(1 − 𝑝)𝑦𝑛−1 = 𝑝𝑛(1 − 𝑝)∑ 𝑦𝑖−𝑛

𝑙𝑛(𝐿(𝑝)) = 𝑛𝑙𝑛(𝑝) + (∑ 𝑦𝑖 − 𝑛)𝑙𝑛(1 − 𝑝)
∴ℓ(𝑝) = 1

𝑝 𝑙𝑛(𝑝) + 1
1−𝑝 (∑ 𝑦𝑖 − 𝑛)(−1)

let ℓ(𝑝) = 0
∴ 1

𝑝 𝑙𝑛(𝑝) + 1
1−𝑝 (∑ 𝑦𝑖 − 𝑛)(−1) = 0

∴𝑝 = 𝑛
∑ 𝑦𝑖

= 1
𝜇1

a.

∵𝐸[𝑓(𝑦|𝜃)] =
∞
∫
𝜃

𝑦𝑒𝜃−𝑦𝑑𝑦 = (−𝑦𝑒𝜃−𝑦 − 𝑒𝜃−𝑦)∣
∞

𝜃
= 1 + 𝜃

∴𝜇1 = 1 + 𝜃, ̂𝜃 = 𝜇1 − 1
b.

𝐿(𝜃) = 𝑒𝑛𝜃−∑ 𝑦𝑖

∵𝑦 > 𝜃
∴ max(𝐿(𝜃)) = max(𝑛𝜃 − ∑ 𝑦𝑖)
∴𝜃 = 𝑚𝑖𝑛(𝑌𝑖)

c.

𝐸[ ̂𝜃1] = 𝜇1 − 1 = 1 + 𝜃 − 1 = 𝜃

𝐸[ ̂𝜃2] = 𝐸[min(𝑌𝑖)] =
∞
∫
𝜃

𝑥𝐹 ′( ̂𝜃2) 𝑑𝑥

=
∞
∫
𝜃

−𝑛𝑥(𝑒𝜃−𝑥)𝑛𝑑𝑥

= −𝑛(− 𝑥
𝑛 (𝑒𝜃−𝑥)𝑛 − 1

𝑛2 (𝑒𝜃−𝑥)𝑛)∣
∞

𝜃

= 𝜃 + 1
𝑛

𝑃→ 𝜃

eff( ̂𝜃1, ̂𝜃2) = 𝑀𝑆𝐸( ̂𝜃1)
𝑀𝑆𝐸( ̂𝜃2) = 𝑉 ( ̂𝜃1)

𝑉 ( ̂𝜃2)

𝑉 ( ̂𝜃1) = 1
𝑛

16



10.1 Exercise Yang’s notes10 MLE: MAXIMUM LIKELIHOOD ESTIMATOR

𝑉 ( ̂𝜃2) = 1
𝑛2

eff( ̂𝜃1, ̂𝜃2) = 1
𝑛

a.

𝐿(𝜆) = ∏ 𝜆𝑦𝑖 𝑒−𝜆
𝑦𝑖!

𝐿𝑛(𝐿(𝜆)) = ∑ 𝑙𝑛( 𝜆𝑦𝑖 𝑒−𝜆
𝑦𝑖! ) = ∑(−𝜆 + 𝑦𝑖𝑙𝑛(𝜆) − 𝑙𝑛(𝑦𝑖!))

ℓ(𝐿(𝜆̂)) = ∑(−1 + 1
𝜆̂ 𝑦𝑖) = 0

𝜆̂ = ∑ 𝑦𝑖
𝑛 = ̄𝑌

b.

𝑉 (𝜆̂) = 𝑉 ( ̄𝑌 ) = 𝜆
𝑛

𝐸(𝜆̂) = 𝐸( ̄𝑌 ) = 𝜆
c.

𝑀𝑆𝐸(𝜆̂) = 0 + 𝑣(𝜆̂) 𝑃→ 0
d.

∵𝜆̂ is MLE of 𝜆
∴𝜆̂ also is MEL of 𝜆 when 𝑌 = 0
∴𝑃 (𝑌 = 0) = 𝑒−𝜆̂

17



Yang’s notes 12 SUFFICIENCY

11 Fisher information

𝐼(𝜃) = 𝐸[ − 𝑑2

𝑑𝜃2 ln 𝑝(𝑌𝑖; 𝜃)] = 𝑉 𝑎𝑟[ 𝑑
𝑑𝜃 ln 𝑝(𝑌𝑖; 𝜃)]

where p is a marginal PMF/PDF, the second equality holds under some condition. Suppose 𝜃 is the true
parameter. Under some conditions, the MLE ̂𝜃 satisfies, as the sample size 𝑛 → ∞:

1. ̂𝜃𝑛 is consistent ( ̂𝜃 𝑃→ 𝜃0).

2. ̂𝜃 is approximately distributed as 𝑁(𝜃, 1
𝑛𝐼(𝜃) ).

3. ̂𝜃 is asymptotically unbiased, with asymptotic variance 1
𝑛𝐼(𝜃) .

In fact, no other consistent estimator can beat this asymptotic variance (Cramer-Rao lower bound).

12 Sufficiency
Suppose (𝑌1, ..., 𝑌𝑛) is a sample from a population distribution with unknown parameter 𝜃. A statistic T
is said to be sufficient for 𝜃, if the conditional distribution of the sample (𝑌1, ..., 𝑌𝑛) given T dose Not
depends on 𝜃
Factorization Theorem: The statistic 𝑇 = 𝑓(𝑌1, ..., 𝑌𝑛), f is a function, is sufficient for parameter 𝜃, if and
only if the likelihood function can be factorized as 𝐿(𝜃; 𝑌1, ..., 𝑌𝑛) = 𝑔(𝑇 , 𝜃) × ℎ(𝑌1, ...𝑌𝑛). Namely, it can be
factorized into two parts such that,

1. one part involves 𝜃 and T;

2. the other part dose not involve 𝜃.

The MLE ̂𝜃 of 𝜃 is a function of a sufficient statistics 𝑇 = 𝑓(𝑌1, ..., 𝑌𝑛) of 𝜃. By factorization theorem
𝐿(𝜃; 𝑌1, ..., 𝑌𝑛) = 𝑔(𝑇 , 𝜃) × ℎ(𝑌1, ...𝑌𝑛). The h factor dose NOT depend on 𝜃. So maximizing L with respect
to 𝜃 is equivalent to maximizing 𝑔(𝑇 , 𝜃). Hence the maximizer depends only on T. It implies that MLE
automatically explores the full information (sufficient statistic) about 𝜃.

12.1 Exercise

For a normal distribution, the PDF is:

𝑓(𝑦) = 1
𝜎

√
2𝜋 𝑒− (𝑦−𝜇)2

2𝜎2

a.

if only 𝜇 is unknown:

𝐿(𝜇) = ( 1
𝜎

√
2𝜋 )𝑛𝑒− ∑ (𝑦𝑖−𝜇)2

2𝜎2

= ( 1
𝜎

√
2𝜋 )𝑛𝑒− 1

2𝜎2 ∑(𝑦𝑖−𝜇)2

18



12.1 Exercise Yang’s notes 12 SUFFICIENCY

∵ ∑(𝑦𝑖 − 𝜇)2 = ∑ 𝑦2
𝑖 + 2 ∑ 𝑦𝑖𝜇 + 𝜇2 = ∑ 𝑦2

𝑖 + 2𝑛 ̄𝑌 + 𝜇2

∴𝐿(𝜇) = ( 1
𝜎

√
2𝜋 )𝑛𝑒− 1

2𝜎2 ∑(𝑦𝑖−𝜇)2

= ( 1
𝜎

√
2𝜋 )𝑛𝑒− 1

2𝜎2 (∑ 𝑦2
𝑖 +2𝑛 ̄𝑌 +𝜇2)

= ( 1
𝜎

√
2𝜋 )𝑛𝑒− 1

2𝜎2 (2𝑛 ̄𝑌 +𝜇2)𝑒− 1
2𝜎2 (∑ 𝑦2

𝑖 )

= 𝑔( ̄𝑌 , 𝜇) × ℎ(𝑦2
𝑖 )

∴ ̄𝑌 is sufficient for 𝜇
b.

if only 𝜎2 is unknown:

similar to a,

𝐿(𝜇) = ( 1
𝜎

√
2𝜋 )𝑛𝑒− ∑ (𝑦𝑖−𝜇)2

2𝜎2

= 𝑔(𝜎2, ∑(𝑦𝑖 − 𝜇)2) × 1
∴ ∑(𝑦𝑖 − 𝜇)2 is sufficient for 𝜇

c.

if both 𝜇, 𝜎2 are unknown:

similar to a,

𝐿(𝜇) = ( 1
𝜎

√
2𝜋 )𝑛𝑒− 1

2𝜎2 (∑ 𝑦2
𝑖 +2 ∑ 𝑦𝑖𝜇+𝜇2)

= 𝑔(∑ 𝑦2
𝑖 , ∑ 𝑦𝑖, 𝜇, 𝜎) × 1

∴ ∑ 𝑦2
𝑖 , ∑ 𝑦𝑖 are sufficient for 𝜇, 𝜎2

∵𝐿(𝛼) = ( 𝛼
𝜃𝛼 )𝑛 ∏ 𝑦𝛼−1

𝑖 𝐼{0 ≤ 𝑦𝑖 ≤ 𝜃}
= 𝑔(∏ 𝑦𝑖, 𝛼) × 1
∴ ∏ 𝑦𝑖 is sufficient for 𝛼

𝐿(𝜃) = 𝑒𝜃−∑ 𝑦𝑖𝐼{𝑦𝑖 ≥ 𝜃}
∵𝑎𝑙𝑙 𝑦𝑖 ≥ 𝜃
∴ min(𝑦𝑖) ≥ 𝜃
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12.1 Exercise Yang’s notes 12 SUFFICIENCY

𝐿(𝜃) = 𝑒𝜃−∑ 𝑦𝑖𝐼{𝑦𝑖 ≥ 𝜃}
= 𝑒𝜃−∑ 𝑦𝑖𝐼{min(𝑦𝑖) ≥ 𝜃}
= 𝑔(min(𝑦𝑖), 𝜃) × 1
∴ min(𝑦𝑖) is sufficient for 𝜃
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Yang’s notes 13 OPTIMAL: MVUE

13 Optimal: MVUE
MVUE: An unbiased estimator ̂𝜃 of 𝜃 is said to be MVUE (minimum-variance unbiased estimator) or
optimal unbiased estimator, if for any other unbiased estimator ̂𝜃′, 𝑉 𝑎𝑟( ̂𝜃; 𝜃) ≤ 𝑉 𝑎𝑟( ̂𝜃′; 𝜃) for all 𝜃 ∈ Θ.

Procedure:

1. Find a sufficient statistic T for 𝜃 using the Factorization Theorem.

2. Find a transform f so that if ̂𝜃 = 𝑓(𝑇 ), then ̂𝜃 is unbiased.

A sufficient statistic T for 𝜃 is said to be complete, if the transform f that can be found in the procedure of
is unique.

13.1 Exercise:

For a normal distribution, the PDF is:

𝑓(𝑦) = 1
𝜎

√
2𝜋 𝑒− (𝑦−𝜇)2

2𝜎2

For MVUE: 1. sufficient, 2. Unbiased

1.

Sufficient

if only 𝜎2 is unknown:

𝐿(𝜇) = ( 1
𝜎

√
2𝜋 )𝑛𝑒− ∑ (𝑦𝑖−𝜇)2

2𝜎2 = ( 1
𝜎22𝜋 ) 𝑛

2 𝑒− ∑ (𝑦𝑖−𝜇)2
2𝜎2

= 𝑔(𝜎2, ∑(𝑦𝑖 − 𝜇)2) × 1
∴ ∑(𝑦𝑖 − 𝜇)2 is sufficient for 𝜎2

2.

Unbiased

∵𝜎2 = ∑(𝑌𝑖 − 𝜇)2

∴ ̂𝜃 = ∑(𝑦𝑖 − 𝜇)2 is unbiased for ∑(𝑌𝑖 − 𝜇)2

∴ ∑(𝑦𝑖 − 𝜇)2 is MVUE of 𝜎2
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For a normal distribution, the PDF is:

𝑓(𝑦) = 1√
2𝜋 𝑒− (𝑦−𝜇)2

2

For MVUE: 1. sufficient, 2. Unbiased

1.

Sufficient

𝐿(𝜇) = ( 1√
2𝜋 )𝑛𝑒− ∑ (𝑦𝑖−𝜇)2

2

∵ ∑(𝑦𝑖 − 𝜇)2 = ∑ 𝑦2
𝑖 + 2 ∑ 𝑦𝑖𝜇 + 𝜇2 = ∑ 𝑦2

𝑖 + 2𝑛 ̄𝑌 + 𝜇2

∴𝐿(𝜇) = ( 1√
2𝜋 )𝑛𝑒− 1

2 ∑(𝑦𝑖−𝜇)2

= ( 1√
2𝜋 )𝑛𝑒− 1

2 (∑ 𝑦2
𝑖 +2𝑛 ̄𝑌 +𝜇2)

= ( 1√
2𝜋 )𝑛𝑒− 1

2 (2𝑛 ̄𝑌 +𝜇2)𝑒− 1
2 (∑ 𝑦2

𝑖 )

= ( 1√
2𝜋 )𝑛𝑒−𝑛 ̄𝑌 (𝑒−𝜇)2𝑒− 1

2 (∑ 𝑦2
𝑖 )

= 𝑔( ̄𝑌 , 𝜇) × ℎ(𝑦2
𝑖 )

∴ ̄𝑌 is sufficient for 𝜇
∴ ̄𝑌 is also sufficient for 𝜇2

2.

Unbiased

∵ ̄𝑌 ∼ 𝑁(𝜇, 𝜎2
𝑛 = 1

𝑛 )
∴𝐸[ ̄𝑌 2] − 𝐸[ ̄𝑌 ]2 = 𝑉 ( ̄𝑌 ) = 1

𝑛

∴𝐸[ ̄𝑌 2] − 1
𝑛 = 𝜇2

∴ ̄𝑌 2 − 1
𝑛 is unbiased estimator of 𝜇2

∴ ̄𝑌 2 − 1
𝑛 is MVUE of 𝜇2

For MVUE: 1. sufficient, 2. Unbiased

1.

Sufficient

𝐿(𝜃) = 𝑒𝑛𝜃−∑ 𝑦𝑖𝐼({𝑦𝑖 ≥ 𝜃})
= 𝑒𝑛𝜃−∑ 𝑦𝑖𝐼({min(𝑌𝑖) ≥ 𝜃})
= 𝑒𝑛𝜃−∑ 𝑦𝑖𝐼({𝑌(1) ≥ 𝜃})
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= 𝑔(𝜃; 𝑌(1)) × ℎ(∑ 𝑦𝑖)
∴𝑌(1) is sufficient for 𝜃

2.

Unbiased

𝐸[𝑌(1)] =
∞
∫
𝜃

𝑥𝐹 ′(𝑌(1)) 𝑑𝑥

=
∞
∫
𝜃

−𝑛𝑥(𝑒𝜃−𝑥)𝑛𝑑𝑥

= −𝑛(− 𝑥
𝑛 (𝑒𝜃−𝑥)𝑛 − 1

𝑛2 (𝑒𝜃−𝑥)𝑛)∣
∞

𝜃

= 𝜃 + 1
𝑛

𝑃→ 𝜃
∴𝑌(1) is unbiased estimator of 𝜃
∴𝑌(1) is MVUE of 𝜃
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14 Confidence Intervals
Basic concepts: A confidence interval (CI) is given by 𝐼 = [𝐿, 𝑈] (two-sided), or 𝐼 = (−∞, 𝑈] or [𝐿, ∞)
(one-sided), where L (lower bound) and U (upper bound) are statistics (functions of sample only).

Most often L and U have continuous distributions. In this case taking closed or open interval does NOT
matter. Since the sample is random, a CI is often random. On the other hand, when a CI has been reported
from the observed data (realized sample), it is NOT random any more. The notion CI can be extended to
a higher dimension, in which case it is called a confidence region.

Assume 𝜃 is the true unknown parameter. Let 𝐼 be a CI, then 𝛼 = 1 − 𝑃(𝜃 ∈ 𝐼) = 𝑃(𝜃 ∉ 𝐼) is called the
confidence level. The number 𝑃(𝜃 ∈ 𝐼) = 1 − 𝛼 is called the coverage probability or confidence coefficient.
We say 𝐼 is a (1 − 𝛼)-CI for 𝜃.

(−∞, 𝑈] is a (1 − 𝛼1)-CI for 𝜃; [𝐿, ∞) is a (1 − 𝛼2)-CI for 𝜃; 𝐿 < 𝑈 . Then [𝐿, 𝑈] is a (1 − 𝛼1 − 𝛼2)-CI for 𝜃.
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15 Pivotal
A quantity 𝑇 = 𝑓(𝜃; 𝑌1, ..., 𝑌𝑛) which is a function of sample and unknown parameter is said to be pivotal, if
assuming 𝜃 is the true parameter, the distribution of T does NOT depend on 𝜃. A pivotal quantity is NOT
a statistic in general. Although its functional depends on 𝜃, its distribution doesn’t.

Pivotal methods:

1. Construct a pivotal quantity T.

2. Set up an equation of the form 𝑃(𝑇 ≤ 𝑦) = 1 − 𝛼 or 𝑃(𝑇 ≥ 𝑦) = 1 − 𝛼. Solve to determine y.

3. Solve the inequality 𝑇 ≤ 𝑦 or 𝑇 ≥ 𝑦 for 𝜃 to get CI.

15.1 Exercise
Provide a short explanation of the concept (1 − 𝛼)-CI to someone with little statistical training

From a random sample which generated from a distribution with a parameter of 𝜃, the (1−𝛼)-CI has (1−𝛼)
chance to capture the true 𝜃. E.g. if we repeated the process of using (1 − 𝛼)-CI to capture the true 𝜃 by N
times with random samples each time, we would have (1 − 𝛼) × 𝑁 times success.

a.

∵
𝑥
∫
0

2(𝜃−𝑦)
𝜃2 𝑑𝑥 = 2𝑥

𝜃 − 𝑥2
𝜃2 , for 0 < 𝑥 < 𝜃

∴𝐹𝑌 (𝑦) =

⎧{{{
⎨{{{⎩

0 , 𝑦 ≤ 0

2𝑥
𝜃 − 𝑥2

𝜃2 , 0 < 𝑦 < 𝜃

1 , 𝑦 ≥ 𝜃
b.

∵𝑈 = 𝑌
𝜃

∴𝑓𝑈(𝑢) = 𝑓𝑌 [ℎ−1(𝑢)] 𝑑ℎ−1
𝑑𝑢 = 2(𝜃−𝜃𝑢)

𝜃2 × 𝜃 = 2(1 − 𝑢), 𝜇 ∈ (0, 1), not depend on 𝜃
∴ 𝑌

𝜃 is pivotal.

c.

∵𝐹𝑈(𝑥) = 𝑃(𝑢 ≤ 𝑥) = 2𝑥 − 𝑥2 (𝑢 ∈ [0, 1]), let a and b (b>a) are two 90% cut-off

25



15.1 Exercise Yang’s notes 15 PIVOTAL

∵𝐹𝑈(𝑎) = 2𝑎 − 𝑎2 = 0.1 and 𝐹𝑈(𝑏) = 2𝑏 − 𝑏2 = 0.9
∴(𝑎 − 1)2 = 0.9 and (𝑏 − 1)2 = 0.1
∵𝑎, 𝑏 ∈ [0, 1]
∴𝑎 = 1 −

√
0.9 and 𝑏 = 1 −

√
0.1

∴ 𝑌
𝜃 ≥ 1 −

√
0.9 or 𝑌

𝜃 ≤ 1 −
√

0.1
∴𝜃 ≤ 𝑌

1−
√

0.9 or 𝜃 ≥ 𝑌
1−

√
0.1 are two different 90%CI

∴𝜃 ∈ [ 𝑌
1−

√
0.1 , ∞)

a.

From 8.44:

∵𝜃 ≤ 𝑌
1−

√
0.9 or 𝜃 ≥ 𝑌

1−
√

0.1 are two different 90%CI

∴𝜃 ∈ (−∞, 𝑌
1−

√
0.9 ]

b.

∵𝑃(𝜃 ∈ ( ̂𝜃𝐿, ̂𝜃𝑈)) = 𝑃(𝜃 ∈ ( ̂𝜃𝐿, ∞) ⋂ 𝜃 ∈ (−∞, ̂𝜃𝑈))
= 𝑃(𝜃 ∈ ( ̂𝜃𝐿, ∞)) + 𝑃(𝜃 ∈ (−∞, ̂𝜃𝑈)) − 𝑃(𝜃 ∈ ( ̂𝜃𝐿, ∞) ⋃ 𝜃 ∈ (−∞, ̂𝜃𝑈))
= 0.9 + 0.9 − 1
= 0.8

Let ̂𝜃 = max(𝑌1, ...𝑌𝑛)

∴𝑃(
̂𝜃

𝜃 ≤ 𝑢) = 𝑃(𝑌1
𝜃 ≤ 𝑢) × 𝑃(𝑌2

𝜃 ≤ 𝑢) × ... × 𝑃(𝑌𝑛
𝜃 ≤ 𝑢)

= 𝑢𝑛, (𝑌𝑖 ≤ 𝜃, 𝑢 =
𝑌(𝑛)

𝜃 ∈ [0, 1])

∴𝑇 = ̂𝜃
𝜃 = 𝑌(𝑛)

𝜃 is pivotal

∵𝐹(𝑇 ) = ( 𝑌(𝑛)
𝜃 )𝑛 ∈ [ 𝛼

2 , 1 − 𝛼
2 ]

∴𝜃 ∈ [ 𝑌(𝑛)
(1− 𝛼

2 ) 1𝑛
, 𝑌(𝑛)

( 𝛼
2 ) 1𝑛

]
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16 Z-Score
The most challenging part of the pivotal method is to come up with a good pivotal quantity. Fortunately
for many common situations, when the sample size is large, one type of pivotal quantity called Z-score can
be always used.

By Central Limit Theorem, we know (approximate equality in distribution):

̄𝑌 − 𝜇
𝜎√𝑛

𝑑≈ 𝑁(0, 1)

If 𝜎2 is unknown, use 𝑆2 sample variance replace it 𝑆2 = 1
𝑛−1

𝑛
∑
𝑖=1

(𝑌𝑖 − ̄𝑌𝑛)2.

Definition: suppose ̂𝜃 is an estimator of 𝜃 and 𝜎̂2 is a consistent estimator of 𝜎2 = 𝑉 𝑎𝑟[ ̂𝜃]. Then the quantity
𝑍 = ̂𝜃−𝜃

𝜎̂
𝑑≈ 𝑁(0, 1) is called the Z-score. Then ̂𝜃 ± 𝜎̂𝑧𝛼/2

16.1 Exercise
Construct a two-sided (1 − 𝛼)-CI for 𝜃 in Uniform[0, 𝜃] based on IID 𝑌1, ..., 𝑌𝑛

Let 𝑦1 ≤ 𝑦2, and 𝑌
𝜃 is pivotal

∵𝑃 (𝑇 ≥ 𝑦1) = 1 − 𝛼
2 and 𝑃(𝑇 ≤ 𝑦2) = 1 − 𝛼

2

∴𝑦1 = 𝑧 𝛼
2

and 𝑦2 = 𝑧1− 𝛼
2

∴𝑇 = 𝑌
𝜃 ≥ 𝑦1 = 𝑧 𝛼

2
and 𝑇 = 𝑌

𝜃 ≤ 𝑦2 = 𝑧1− 𝛼
2

= −𝑧 𝛼
2

∴𝜃 ≤ 𝑌
𝑧 𝛼

2
and 𝜃 ≥ 𝑌

−𝑧 𝛼
2

∴(1 − 𝛼)-CI is [ 𝑌
−𝑧 𝛼

2
, 𝑌

𝑧 𝛼
2

]

a.

∵ n=800, p=0.45

∴𝜎̂ = √ 𝑝(1−𝑝)
𝑛 = 0.0176

∵𝑍 = 𝑝̂−𝑝
𝜎̂

𝑑≈ 𝑁(0, 1)
∴𝑃(𝑍 ≤ 𝑧𝛼/2) = 0.01 and 𝑃(𝑍 ≥ 𝑧1−𝛼/2) = 0.01, 𝑧𝛼/2 = −𝑧1−𝛼/2 = −2.32
∴𝑧𝛼/2 ≤ 𝑍 ≤ 𝑧1−𝛼/2

∴0.409 = ̂𝑝 − 𝜎̂𝑧𝛼/2 ≤ 𝑝 ≤ 𝑝 + 𝜎̂𝑧𝛼/2 = 0.491
b.
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∵𝑝 ≤ 0.5, less than half think it better.

∴ a majority of adults say that movies are not getting better.
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17 Small-sample CI
When the sample size is small, to compensate for the lack of information due to small sample size, we shall
make a strong assumption: a sample follows a normal distribution (central limit theorem).

Let 𝑍(𝑍1, 𝑍2, ..., 𝑍𝑛) be I.I.D. N(0,1):

1. 𝜒2(𝜈), distribution of 𝑊 = 𝑍2
1/𝜎 + 𝑍2

2/𝜎 + ... + 𝑍2
𝑛/𝜎;

2. 𝑡(𝜈), distribution of 𝑇 = 𝑍
√𝑊/𝜈 . 𝑡(𝜈) has a similar shape to normal distribution (e.g. 𝜈 > 30).

For normal distribution 𝑁 ∼ (𝜇, 𝜎2),

THEOREM 7.1: ̄𝑌 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖 ∼ 𝑁(𝜇, 𝜎2/𝑛).

THEOREM 7.2: for 𝑍𝑖 = (𝑌𝑖 − 𝜇)/𝜎,
𝑛

∑
𝑖=1

𝑍2
𝑖 =

𝑛
∑
𝑖=1

( 𝑌𝑖−𝜇
𝜎 )2 has a 𝜒2 distribution with degrees of freedom (df)

= n.

THEOREM 7.3: (𝑛−1)𝑆2

𝜎2 = 1
𝜎2

𝑛
∑
𝑖=1

(𝑌𝑖 − ̄𝑌 )2 has a 𝜒2 distribution with (n-1) d.f., 𝑆2 is a random sample
variance.

Definition 7.3: Let 𝑊1 and 𝑊2 be independent 𝜒2 distributed random variables with 𝜈1 and 𝜈2 d.f.. Then
𝐹 𝑊1/𝜈1

𝑊2/𝜈2
is said to have an F distribution with 𝜈1 numerator d.f. and 𝜈2 denominator d.f..

17.1 Exercise
Derive a one-sided (1 − 𝛼)-CI (−∞, 𝑈] for 𝜇
∵𝑃(𝑇𝑛 = ̄𝑌 −𝜇

𝜎√𝑛
≥ 𝑡𝛼,(𝑛−1)) = 1 − 𝛼

∴𝜇 ≤ ̄𝑌 − 𝑡𝛼,(𝑛−1)
𝜎√𝑛

∵𝑡𝛼,(𝑛−1) ≤ 0
∴𝜇 ∈ (−∞, ̄𝑌 + |𝑡𝛼,(𝑛−1)| 𝜎√𝑛 ]
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a.
̄𝑌𝑒,𝑣 = 446, 𝑆𝑒,𝑣 = 42, 𝑛1 = 15, and ̄𝑌𝑙,𝑣 = 534, 𝑆𝑙,𝑣 = 45, 𝑛2 = 15.

∵𝑆2
𝑒,𝑙,𝑣𝑒𝑟𝑏𝑎𝑙 = (𝑛1−1)𝑆2

𝑒,𝑣+(𝑛2−1)𝑆2
𝑙,𝑣

30−2 = 1894.5

∴( ̄𝑌𝑒,𝑣 − ̄𝑌𝑙,𝑣) ± 𝑡𝛼/2,28√1894.5(1/15 + 1/15)
∴(𝜇𝑒,𝑣 − 𝜇𝑙,𝑣) ∈ [−88 − 2.048407 ∗ 15.89339 = −120, −88 + 2.048407 ∗ 15.89339 = −55]

b.
̄𝑌𝑒,𝑚 = 548, 𝑆𝑒,𝑚 = 57, 𝑛1 = 15, and ̄𝑌𝑙,𝑚 = 517, 𝑆𝑙,𝑚 = 52, 𝑛2 = 15.

∵𝑆2
𝑒,𝑙,𝑚𝑎𝑡ℎ = (𝑛1−1)𝑆2

𝑒,𝑚+(𝑛2−1)𝑆2
𝑙,𝑚

30−2 = 2976.5

∴( ̄𝑌𝑒,𝑚 − ̄𝑌𝑙,𝑚) ± 𝑡𝛼/2,28√2976.5(1/15 + 1/15)
∴(𝜇𝑒,𝑚 − 𝜇𝑙,𝑚) ∈ [31 − 2.048407 ∗ 19.92151 = −10, 31 + 2.048407 ∗ 19.92151 = 72]

c.

(𝜇𝑒,𝑣 − 𝜇𝑙,𝑣) ∈ [−120, −55] and (𝜇𝑒,𝑚 − 𝜇𝑙,𝑚) ∈ [−10, 72]
∴ Engineering has lower average scores of Verbal than Language/literature, and Engineering has similar
average scores of Math to Language/literature

d. These methods need the SAT scores of Engineering and Language/literature students follow Normal
distribution.
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18 CI for 𝜎2

𝑇 = (𝑛−1)𝜎̂2
𝑛

𝜎2 = 1
𝜎2

𝑛
∑
𝑖=1

(𝑌𝑖 − ̄𝑌 )2 ∼ 𝜒2(𝑛 − 1)

18.1 Exercise

∵𝑇 =
𝑛
∑
𝑖=1

(𝑌𝑖− ̄𝑌𝑛)2

𝜎2 = (𝑛−1)𝜎̂2
𝑛

𝜎2 ∼ 𝜒2(𝑛 − 1 = 4)

∵
𝑛

∑
𝑖=1

(𝑌𝑖 − ̄𝑌𝑛)2 = 48

∴𝑇 = 48/𝜎2

𝜒2
0.005,4 = 0.207 and 𝜒2

0.005,4 = 14.860
∴𝑇 ∈ [0.207, 14.860]
∴𝜎2 ∈ [3.23, 231.88]
Provide other real-life scenarios where such imbalance (a) exists and (b) does not exist.

a. Imbalance severity of false decision. For cancer diagnosis, 𝐻1: Having cancer, 𝐻2: Not having cancer.
Mistake on 𝐻2 is much severity.

b. Balance severity of false decision. For a patient has a higher Human C-Reactive Protein (CRP)
Protein, the doctor given antibiotics to treat inflammation. 𝐻1: Upper respiratory infection, 𝐻2:
Lower respiratory infection. Mistake on 𝐻2 is not much severity.
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19 Statistical Decision
Definition 11.1.2:

1. {𝐹𝜃 ∶ 𝜃 ∈ Θ}: a parametric family of distributions (e.g., 𝐹𝜃 = Bernoulli(𝜃));
2. {𝑌1, ..., 𝑌𝑛}: samples from one (unknown) 𝐹𝜃;

3. Θ = Θ1 ∪ Θ2 and Θ1 ∩ Θ2 = ∅
4. Hypothesis 𝐻1 ∶ 𝜃 ∈ Θ1, 𝐻2 ∶ 𝜃 ∈ Θ2: (e.g., Θ = [0, 1] = 𝜃1 ∪ 𝜃2 = [0.9, 1] ∪ [0, 0.9))
5. T: a statistic used to make decision 𝐻1 or 𝐻2;

6. 𝑅1, 𝑅2: two disjoint regions in ℝ , so that 𝑅1 ∪ 𝑅2 cover all possible values of T. (e.g., 𝑇 = ̄𝑌𝑛 ,
𝑅1 = [𝜃𝑡, 1] and 𝑅2 = [0, 𝜃𝑡))

Decision rule

𝑇 ∈ 𝑅1 ⇒ 𝐻1, 𝑇 ∈ 𝑅2 ⇒ 𝐻2

𝑃𝜃(𝐴) ∶ probability of event A when𝜃is the true parameter

Mistake is inevitable when 𝜃 is near the border between Θ1 and Θ2 (candidate distributions are indistin-
guishable).

Mistake A: 𝐻1 holds but we choose 𝐻2 (falsely reject 𝐻1).

Mistake B: 𝐻2 holds but we choose 𝐻1 (falsely reject 𝐻2).

Severity of false decision. If mistake on 𝐻1 or 𝐻2, the severity similar then it is balance, otherwise is
imbalance. When the imbalance exists, New idea: In a statistical decision, we first guard against the
mistake of more severity (e.g., ensure the probability of this mistake is ≤ 0.05), and then do our best to
minimize the probability of other mistake.

20 Elements of statistical test
Definition 11.2.1.

Statistical hypothesis test (HT) is a statistical decision process which has the following elements:

1. Null hypothesis 𝐻0 ∶ 𝜃 ∈ Θ0;

2. Alternative hypothesis 𝐻𝑎 ∶ 𝜃 ∈ Θ𝑎; Where disjoint Θ0 ∪ Θ𝑎 = Θ, and Severity of falsely accepting 𝐻0
< Severity of falsely accepting 𝐻𝑎.

3. Test statistic T;

4. Rejection region RR;

5. Decision rule: 𝑇 ∈ 𝑅𝑅 ⇒ reject𝐻0(or accept𝐻𝑎); otherwise, 𝑇 ∉ 𝑅𝑅 ⇒ fail to reject𝐻0.

Definition 11.2.3.

In a HT:

1. Type I Error: 𝐻0 is true but we choose 𝐻𝑎 (falsely reject 𝐻0), whose probability is denoted as
𝛼(𝜃) = 𝑃𝜃(𝑇 ∈ 𝑅𝑅), 𝜃 ∈ Θ0

2. Type II Error: 𝐻𝑎 is true but we choose 𝐻0 (falsely reject 𝐻𝑎 ), whose probability is denoted as
𝛽(𝜃) = 𝑃𝜃(𝑇 ∉ 𝑅𝑅), 𝜃 ∈ Θ𝑎
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3. The probability of accepting 𝐻𝑎 when 𝐻𝑎 is true is called power of the test, pw(𝜃) = 𝑃𝜃(𝑇 ∈ 𝑅𝑅) =
1 − 𝛽(𝜃), 𝜃 ∈ Θ𝑎. namely,

Important: 1. In general, both 𝛼(𝜃) and 𝛽(𝜃) are functions, but defined on different domains Θ0 and Θ𝑎
respectively. 2. simple null hypothesis or composite null hypothesis. 3. 𝛼 = max(𝛼(𝜃) ∶ 𝜃 ∈ Θ0)

20.1 Exercise
Provide an elementary explanation of the concepts in a HT: null/alternative hypotheses, Type
I/II errors and power to someone with little statistical training.

Answer:

Let a range Θ can divided into two separate sub-area Θ0, Θ𝑎, and we have a 𝜃 needed to be tested

1. Null hypothesis: the hypothesis to be tested, e.g 𝜃 belong to Θ0, 𝜃 ∈ Θ0.

2. Alternative hypotheses: the hypothesis we could accept when we reject the null hypothesis.

3. Type I errors: if the null hypothesis is true, the probability of falsely rejecting the null hypothesis.

4. Type II errors: if the alternative hypothesis is true, the probability of falsely rejecting the alternative
hypothesis.

5. Power: if the alternative hypothesis is true, the probability of correctly accepting alternative hypothesis.

Suppose 𝑌𝑖 are IID N(𝜃, 1) as above. Suppose we test 𝐻0 ∶ 𝜃 = 0 vs 𝐻𝑎 ∶ 𝜃 ≠ 0. Still 𝑇 = ̄𝑌𝑛, but
RR now takes the form (−∞, −𝑐] ∪ [+𝑐, ∞), where c is a threshold chosen to make the test at
level 𝛼. Calculate the type I, II error probabilities and the power.

Answer:

∵𝑌𝑖 ∼ 𝑁(𝜃, 1), 𝐻0 ∶ 𝜃 = 0, 𝐻𝑎 ∶ 𝜃 ≠ 0, 𝑇 = ̄𝑌 ∼ 𝑁(𝜃, 1
𝑛 ), Reject region (RR) = (−∞, −𝑐] ∪ [+𝑐, ∞)

∴ ̄𝑌 −𝜃
1√𝑛

∼ 𝑁(0, 1)

Type I error: when 𝜃 = 0

∴𝛼(𝜃 = 0) = 𝑃𝜃(𝑇 ∈ 𝑅𝑅)

= 𝑃𝜃(𝑇 ≤ −𝑐 ∪ 𝑇 ≥ 𝑐)

= 1 − 𝑃𝜃(−𝑐 ≤ 𝑇 ≤ 𝑐)

= 1 − 𝑃𝜃(√𝑛(−𝑐 − 𝜃) ≤ √𝑛(𝑇 − 𝜃) ≤ √𝑛(𝑐 − 𝜃))

= 1 − (Φ(√𝑛(𝑐 − 𝜃)) − Φ(√𝑛(−𝑐 − 𝜃)))

= 1 − (Φ(𝑐√𝑛) − Φ(−𝑐√𝑛))

= 𝛼

∴Φ(𝑐√𝑛) − Φ(−𝑐√𝑛) = 1 − 𝛼
∴Φ(𝑐√𝑛) = 1 − 𝛼

2
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∴𝑐√𝑛 = 𝑧1− 𝛼
2

, 𝑐 = 𝑧1− 𝛼
2√𝑛

Type II error: when 𝜃 ≠ 0

∴𝛽(𝜃 ≠ 0) = 𝑃𝜃(𝑇 ∉ 𝑅𝑅)

= 𝑃𝜃(−𝑐 ≤ 𝑇 ≤ 𝑐)

= 𝑃𝜃(√𝑛(−𝑐 − 𝜃) ≤ √𝑛(𝑇 − 𝜃) ≤ √𝑛(𝑐 − 𝜃))

= Φ(√𝑛(𝑐 − 𝜃)) − Φ(√𝑛(−𝑐 − 𝜃)), if 𝑐 =
𝑧1− 𝛼

2√𝑛

= Φ(𝑧1− 𝛼
2

− 𝜃√𝑛) − Φ(−𝑧1− 𝛼
2

− 𝜃√𝑛)

Power: when 𝜃 ≠ 0, 𝑃𝜃(𝑇 ∈ 𝑅𝑅) = 1 − 𝛽(𝜃 ≠ 0)

∴pw(𝜃) = 1 − (Φ(𝑧1− 𝛼
2

− 𝜃√𝑛) − Φ(−𝑧1− 𝛼
2

− 𝜃√𝑛))
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21 Large-sample Z-tests
Idea: 1. Estimate 𝜃 with an estimator ̂𝜃; 2. ̂𝜃 far from 𝜃0 ⇒ reject 𝐻0

𝑍 =
̂𝜃 − 𝜃0

̂𝛼

𝐻0 𝐻0 Rejection Rule
𝜃 = 𝜃0 𝜃 ≠ 𝜃0 ‖𝑍‖ > 𝑍𝛼/2
𝜃 = 𝜃0 or 𝜃 ≤ 𝜃0 𝜃 > 𝜃0 ‖𝑍‖ > 𝑍𝛼/2
𝜃 = 𝜃0 or 𝜃 ≥ 𝜃0 𝜃 < 𝜃0 ‖𝑍‖ < −𝑍𝛼/2

If 𝐻0 ∶ 𝜃 = 𝜃0 is true, then when sample size is large, 𝑍 ∼ 𝑁(0, 1)
Type I error: 𝑃𝜃0

(|𝑍| > 𝑧𝛼/2) = 𝛼

Hypothesis test and confidence interval: if a CI fails to cover 𝜃0, then ̂𝜃 = 𝜃0 is unlikely.

21.1 Exercise

a.

∵ n=800, p=0.45

∴𝜎̂ = √ 𝑝(1−𝑝)
𝑛 = 0.0176

∵𝑍 = 𝑝̂−𝑝
𝜎̂

𝑑≈ 𝑁(0, 1)
∴𝑃(𝑍 ≤ 𝑧𝛼/2) = 0.01 and 𝑃(𝑍 ≥ 𝑧1−𝛼/2) = 0.01, 𝑧𝛼/2 = −𝑧1−𝛼/2 = −2.32
∴𝑧𝛼/2 ≤ 𝑍 ≤ 𝑧1−𝛼/2

∴0.409 = ̂𝑝 − 𝜎̂𝑧𝛼/2 ≤ 𝑝 ≤ 𝑝 + 𝜎̂𝑧𝛼/2 = 0.491
b.

∵𝑝 ≤ 0.5, less than half think it better.

∴ a majority of adults say that movies are not getting better.

Derive a one-sided (1 − 𝛼)-CI (−∞, 𝑈] for 𝜇
∵𝑃(𝑇𝑛 = ̄𝑌 −𝜇

𝜎√𝑛
≥ 𝑡𝛼,(𝑛−1)) = 1 − 𝛼

∴𝜇 ≤ ̄𝑌 − 𝑡𝛼,(𝑛−1)
𝜎√𝑛

∵𝑡𝛼,(𝑛−1) ≤ 0
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∴𝜇 ∈ (−∞, ̄𝑌 + |𝑡𝛼,(𝑛−1)| 𝜎√𝑛 ]

a.
̄𝑌𝑒,𝑣 = 446, 𝑆𝑒,𝑣 = 42, 𝑛1 = 15, and ̄𝑌𝑙,𝑣 = 534, 𝑆𝑙,𝑣 = 45, 𝑛2 = 15.

∵𝑆2
𝑒,𝑙,𝑣𝑒𝑟𝑏𝑎𝑙 = (𝑛1−1)𝑆2

𝑒,𝑣+(𝑛2−1)𝑆2
𝑙,𝑣

30−2 = 1894.5

∴( ̄𝑌𝑒,𝑣 − ̄𝑌𝑙,𝑣) ± 𝑡𝛼/2,28√1894.5(1/15 + 1/15)
∴(𝜇𝑒,𝑣 − 𝜇𝑙,𝑣) ∈ [−88 − 2.048407 ∗ 15.89339 = −120, −88 + 2.048407 ∗ 15.89339 = −55]

b.
̄𝑌𝑒,𝑚 = 548, 𝑆𝑒,𝑚 = 57, 𝑛1 = 15, and ̄𝑌𝑙,𝑚 = 517, 𝑆𝑙,𝑚 = 52, 𝑛2 = 15.

∵𝑆2
𝑒,𝑙,𝑚𝑎𝑡ℎ = (𝑛1−1)𝑆2

𝑒,𝑚+(𝑛2−1)𝑆2
𝑙,𝑚

30−2 = 2976.5

∴( ̄𝑌𝑒,𝑚 − ̄𝑌𝑙,𝑚) ± 𝑡𝛼/2,28√2976.5(1/15 + 1/15)
∴(𝜇𝑒,𝑚 − 𝜇𝑙,𝑚) ∈ [31 − 2.048407 ∗ 19.92151 = −10, 31 + 2.048407 ∗ 19.92151 = 72]

c.

(𝜇𝑒,𝑣 − 𝜇𝑙,𝑣) ∈ [−120, −55] and (𝜇𝑒,𝑚 − 𝜇𝑙,𝑚) ∈ [−10, 72]
∴ Engineering has lower average scores of Verbal than Language/literature, and Engineering has similar
average scores of Math to Language/literature

d.

These methods need the SAT scores of Engineering and Language/literature students follow Normal distri-
bution.
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22 Small-sample tests
Under 𝐻0,

𝑇 =
̄𝑌 − 𝜇0

𝜎̂/√𝑛 ∼ 𝑡(𝑛 − 1)

, where 𝜎̂2 = 1
𝑛−1 ∑𝑛

𝑖=1(𝑌𝑖 − ̄𝑌𝑛)2 is the unbiased estimate of 𝜎2

Two-sample meas Assumption: {𝑋1, ..., 𝑋𝑛1} IID 𝑁(𝜇1, 𝜎2), {𝑌1, ..., 𝑌𝑛2} IID 𝑁(𝜇2, 𝜎2), 𝑋𝑖’s are inde-
pendent of 𝑌𝑖’s.

𝐻0 ∶ 𝜇1 − 𝜇2 = 𝛿0 vs 𝐻𝑎 ∶

⎧{{{
⎨{{{⎩

𝜇1 − 𝜇2 > 𝛿0;

𝜇1 − 𝜇2 ≠ 𝛿0;

𝜇1 − 𝜇2 < 𝛿0;

vs 𝑅𝑅 =

⎧{{{
⎨{{{⎩

𝑡 > 𝑡𝛼(𝜈);

𝑡 < −𝑡𝛼/2(𝜈) or 𝑡 > 𝑡𝛼/2(𝜈);

𝑡 < −𝑡𝛼(𝜈);

𝜈 = 𝑛1 + 𝑛2 − 2

𝑇 = 𝑋̄ − ̄𝑌 − 𝛿0
𝜎̂/√1/𝑛1 + 1/𝑛2

∼ 𝑡(𝑛1 + 𝑛2 − 2), under 𝐻0

𝜎̂2 = ∑𝑛1
𝑖=1(𝑋𝑖 − 𝑋̄)2 + ∑𝑛2

𝑖=1(𝑌𝑖 − ̄𝑌 )2

𝑛1 + 𝑛2 − 2

22.1 Exercise
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a.

Null hypotheses: 𝜇1 ≤ 𝜇2 ⇒ 𝜃0 = 𝜇1 − 𝜇2 ≤ 0 , alternative hypotheses: 𝜇1 > 𝜇2 ⇒ 𝜃𝑎 = 𝜇1 − 𝜇2 > 0
b.

∵𝜎̂2 = ∑(𝑋𝑖−𝑋̄)2+∑(𝑌𝑖− ̄𝑌 )2)
𝑛1+𝑛2−2 = 33272854

∴𝜎̂ = 5768.263, and √ 1
𝑛1

+ 1
𝑛2

= 0.1420996

∴𝑇 = 𝑋̄− ̄𝑌 −𝛿
5768.263/0.1420996 ∼ 𝑡(130 + 80 − 2)

∵|𝑡208,0.01| = 2.3444
∴ the rejection region for 𝑇 , is 𝑅𝑅 ∈ [2.3444, +∞)

c.

∵𝑇 = 𝑋̄− ̄𝑌 −𝛿
5768.263/0.1420996 = 9017−5853

40593.1 = 0.07794428
d.

Fail to reject 𝐻0 – not enough evidence to conclude the mean distance for breaststroke is larger than
individual medley.

When 𝜃0 = 0.2, sample size = 100, then 𝜎2 = 𝑝(1−𝑝)
𝑛 , 𝜎 = 0.04, One-tail reject region = [0, 𝑐]

∴𝛼(𝜃 = 0.2) = 𝑃𝜃( ̂𝜃 ∈ 𝑅𝑅)
= 𝑃𝜃( ̂𝜃 ≤ 𝑐)

= 𝑃𝜃(
̂𝜃 − 0.2
0.04 ≤ 𝑐 − 0.2

0.04 )
= 𝛼
= 0.05

∵𝑧0.05 = −1.645
∴ 𝑐−0.2

0.04 ≤ −1.645
∴𝑐 ≤ 0.1342
∴𝑅𝑅 ∈ [0, 0.1342]
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∵ ̂𝜃−𝜃0
𝛼 ̂𝜃

> 𝑧𝛼

∴ ̂𝜃 − 𝜃0 > 𝛼 ̂𝜃𝑧𝛼

∴ ̂𝜃 − 𝛼 ̂𝜃𝑧𝛼 > 𝜃0

∵ ̂𝜃−𝜃0
𝛼 ̂𝜃

< −𝑧𝛼

∴ ̂𝜃 − 𝜃0 < −𝛼 ̂𝜃𝑧𝛼

∴ ̂𝜃 + 𝛼 ̂𝜃𝑧𝛼 < 𝜃0

𝑅𝑅 =

⎧{{{
⎨{{{⎩

𝑡 > 𝑡𝛼(𝑛−1);

|𝑡| > 𝑡𝛼/2(𝑛−1);

𝑡 < −𝑡𝛼(𝑛−1);

Find the CIs of 𝜇 corresponding to the three rejection regions above respectively.

Answer:

(1 − 𝛼)%CI =
⎧{
⎨{⎩

(−∞, 𝜇 + 𝜎̂√𝑛 𝑡𝛼(𝑛−1));
(𝜇 − 𝜎̂√𝑛 𝑡𝛼/2(𝑛−1), 𝜇 + 𝜎̂√𝑛 𝑡𝛼/2(𝑛−1));
(𝜇 − 𝜎̂√𝑛 𝑡𝛼(𝑛−1), ∞, );
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a:

𝐻0 ∶ 𝜇1 − 𝜇2 = 0 vs 𝐻𝑎 ∶ 𝜇1 − 𝜇2 ≠ 0

𝜎̂2 = (𝑛1−1)𝑠2
1+(𝑛2−1)𝑠2

2
𝑛1+𝑛2−2 = 442

𝑇 = 78 − 67 − 0
𝜎̂√1/20 + 1/20

= 11
21 ∗ 0.316 = 1.658

∵𝑡0.025,(38) = −2.02
∴ no sufficient evidence to claim that there is a difference in the average amount spent on weekends and
weekdays.

a. Let the attained significant level be 𝛼 = 0.05
b.

𝐻0 ∶ 𝜇1 − 𝜇2 = 0 vs 𝐻𝑎 ∶ 𝜇1 − 𝜇2 ≠ 0

𝜎̂2 = (𝑛1−1)𝑠2
1+(𝑛2−1)𝑠2

2
𝑛1+𝑛2−2 = 90.5

𝑇 = 74−71−0
𝜎̂√1/50+1/50 = 3

9.51∗0.2 = 1.579

∵𝑡0.025,(98) = −1.98
∴ there no sufficient evidence to claim that there is a difference in the average scores of two methods.
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23 Variance
Assumption: {𝑌1, ..., 𝑌𝑛} IID 𝑁(𝜇2, 𝜎2)

𝐻0 ∶ 𝜎2 = 𝜎2
0 vs 𝐻𝑎 ∶

⎧{
⎨{⎩

𝜎2 > 𝜎2
0;

𝜎2 ≠ 𝜎2
0;

𝜎2 < 𝜎2
0;

vs 𝑅𝑅 =
⎧{
⎨{⎩

𝑡 > 𝜒2
𝛼(𝑛 − 1);

𝑡 > 𝜒2
𝛼/2(𝑛 − 1) or 𝑡 < 𝜒2

1−𝛼/2(𝑛 − 1);
𝑡 < 𝜒2

1−𝛼(𝑛 − 1);

𝑇 = ∑𝑛1
𝑖=1(𝑌𝑖 − ̄𝑌 )2

𝜎2
0

= (𝑛 − 1)𝑆2

𝜎2
0

∼ 𝜒2(𝑛 − 1), under 𝐻0

where 𝜒2
𝛼(𝜈) denotes the (1-𝛼)-quantile.

23.1 Exercise

∵𝑇 =
𝑛
∑
𝑖=1

(𝑌𝑖− ̄𝑌𝑛)2

𝜎2 = (𝑛−1)𝜎̂2
𝑛

𝜎2 ∼ 𝜒2(𝑛 − 1 = 4)

∵
𝑛

∑
𝑖=1

(𝑌𝑖 − ̄𝑌𝑛)2 = 𝜎̂2(5 − 1)

∴𝑇 = 144.5001 ∗ 4/𝜎2

𝜒2
0.005,4 = 0.20699 and 𝜒2

0.005,4 = 14.8602
∵144.5001 × 4/14.8602 = 38.89587, 144.5001 × 4/0.20699 = 2792.407
∴𝜎2 ∈ [38.89587, 2792.407]
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24 The p-values
Let two-sided 𝛼 level Z-test of 𝐻0 ∶ 𝜃 = 𝜃0 vs 𝐻𝑎 ∶ 𝜃 ≠ 𝜃0, reject 𝐻0 if

|𝑍 =
̂𝜃 − 𝜃0
𝜎̂ | > 𝑧𝛼/2

1. As 𝛼 ↑, 𝑧𝛼/2 ↓, so RR expands.

2. Expands or shrink 𝑅𝑅𝛼, such that 𝑅𝑅𝛼 just exclude Z. Denote this 𝛼 as p.

3. This p is the smallest 𝛼 could be if we want still rejecting 𝐻0

Definition 11.6.2: In a HT, the 𝛼-level rejection regions 𝑅𝑅𝛼 are said to be nested, if 𝑅𝑅𝛼 ⊂ 𝑅𝑅𝛼′ when
𝛼 ≤ 𝛼′, namely, the rejection region expands as 𝛼 ↑.

Definition 11.6.3: In a HT with nested rejection regions 𝑅𝑅𝛼, the p-value is defined as the random variable
̂𝑝 = min{𝛼 ∶ 𝑇 ∈ 𝑅𝑅𝛼}. Because T is statistic, so ̂𝑝 is also a statistic.

Let 𝑢 ∈ [0, 1], ̂𝑝 = min{𝛼 ∶ 𝑇 ∈ 𝑅𝑅𝛼} > 𝑢 ⟺ 𝑇 ∉ 𝑅𝑅𝑢. Then 𝑃𝜃0
( ̂𝑝 > 𝑢) = 𝑃𝜃0

(𝑇 ∉ 𝑅𝑅𝑢) = 1 − 𝑢.

Hence 𝑃𝜃0
( ̂𝑝 ≤ 𝑢) = 𝑢, it is a Uniform(0,1) distribution.

Hence an observed p-value can be interpreted as: the probability of the test statistic being more extreme than
the observed value under H0.

24.1 Exercise
Provide an elementary explanation of p-value to someone with little statistical training.

Answer:

Under H0, the probability of the test statistic being more extreme than the observed value. For example, if
we think x = y, then x - y should be 0. If we observed x - y = c, c > 0, then the probability of all possible
results of x - y belong to [c, ∞].
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25 Optimal: UMP
The goodness of a test is measured by 𝛼 and 𝛽 , the probabilities of type I and type II errors, respectively.
Typically, the value of 𝛼 is chosen in advance and determines the location of the rejection region. A related
but more useful concept for evaluating the performance of a test is called the power of the test. Basically,
the power of a test is the probability that the test will lead to rejection of the null hypothesis.

Suppose that W is the test statistic and RR is the rejection region for a test of a hypothesis involving the
value of a parameter 𝜃. Then the power of the test, denoted by power (𝜃) , is the probability that the test
will lead to rejection of 𝐻0 when the actual parameter value is 𝜃 . That is,

power(𝜃) = 𝑃(W in RR when the parameter value is 𝜃)

Relationship Between Power and 𝛽: If 𝜃𝑎 is a value of 𝜃 in the alternative hypothesis 𝐻𝑎 , then

power(𝜃𝑎) = 1 − 𝛽(𝜃𝑎)

Selecting tests with the smallest possible value of 𝛽 for tests where 𝛼, the probability of a type I error, is a
fixed value selected by the researcher.

THEOREM 10.1 Neyman-Pearson Lemma: Suppose that we wish to test the simple null hypothesis
𝐻0 ∶ 𝜃 = 𝜃0 versus the simple alternative hypothesis 𝐻𝑎 ∶ 𝜃 = 𝜃𝑎, based on a random sample 𝑌1, 𝑌2, ..., 𝑌𝑛
from a distribution with parameter 𝜃. Let 𝐿(𝜃) denote the likelihood of the sample when the value of the
parameter is 𝜃. Then, for a given 𝛼, the test that maximizes the power at 𝜃𝑎 has a rejection region, RR,
determined by

𝐿(𝜃0)
𝐿(𝜃𝑎) < 𝑘

The value of k is chosen so that the test has the desired value for 𝛼. Such a test is a most powerful 𝛼 - level
test for 𝐻0 versus 𝐻𝑎.

Uniformly most powerful test
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The Neyman–Pearson lemma is useless if we wish to test a hypothesis about a single parameter 𝜃 when the
sampled distribution contains other unspecified parameters.

Assumptions:

1. 𝐻0 ∶ 𝜃 = 𝜃0 vs 𝐻𝑎 ∶ 𝜃 = 𝜃𝑎

2. Level: 𝛼
3. 𝐿(𝜃) likelihood function, 𝜃 ∈ {𝜃0, 𝜃𝑎}
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25.1 Exercise

a.

𝑃𝜃(𝑦 ∈ 𝑅𝑅) = 𝑃𝜃(𝑦 > 0.5) =
1

∫
0.5

𝜃𝑦𝜃−1𝑑𝑦 = 1 − (0.5)𝜃

b.

∵ 𝐿(𝜃0)
𝐿(𝜃𝑎) = 𝐿(1)

𝜃𝑎𝑦𝜃𝑎−1

Let 𝑇 = 𝐿(1)
𝜃𝑎𝑦𝜃𝑎−1 < 𝑘, then 𝑃𝜃0

(𝑦 > ( 1
𝑘𝜃𝑎

)1/(𝜃𝑎−1) = 𝑐) = 𝛼

∵𝑃𝜃0
(𝑦 > ( 1

𝑘𝜃𝑎
)1/(𝜃𝑎−1) = 𝑐) =

1
∫
𝑐

𝜃𝑦𝜃−1 = 1 − 𝑐 = 𝛼

∴𝑅𝑅 = 𝑦 > 1 − 𝛼, not depend on a specific 𝜃𝑎

∴𝑦 > 1 − 𝛼 is a uniformly most powerful (UMP) decision rule.
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26 Likelihood ratio test
The procedure works for simple or composite hypotheses and whether or not other parameters with unknown
values are present.

A likelihood Ratio Test: 𝐻0 ∶ Θ ∈ Ω0 v.s. 𝐻𝑎 ∶ Θ ∈ Ω𝑎 employs 𝜆 as a test statistic, and the rejection
region is determined by 𝜆 ≤ 𝑘.

𝜆 = 𝐿(Ω̂0)
𝐿(Ω̂)

=
max
Θ∈Ω0

𝐿(Θ)

max
Θ∈Ω

𝐿(Θ)

Let 𝐿(Ω̂0) denote the maximum (actually the supremum) of the likelihood function for all Θ ∈ Ω0. That
is, 𝐿(Ω̂0) = max

Θ∈Ω0
𝐿(Θ). Notice that 𝐿(Ω̂0) represents the best explanation for the observed data for all

Θ ∈ Ω0 and can be found by using methods similar to those used in Section 9.7. Similarly, 𝐿(Ω̂) = max
Θ∈Ω

𝐿(Θ)
represents the best explanation for the observed data for all Θ ∈ Ω = Ω0 ∪ Ω𝑎. If 𝐿(Ω̂0) = 𝐿(Ω̂), then a
best explanation for the observed data can be found inside Ω0, and we should not reject the null hypothesis
𝐻0 ∶ Θ ∈ Ω0. However, if 𝐿(Ω̂0) < 𝐿(Ω̂), then the best explanation for the observed data can be found
inside Ω𝑎, and we should consider rejecting 𝐻0 in favor of 𝐻𝑎. A likelihood ratio test is based on the ratio
𝐿(Ω̂0)/𝐿(Ω̂).
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26.1 Exercise

a.

b.

∵𝐿(𝑝) = 𝑝∑ 𝑦𝑖(1 − 𝑝)𝑛−∑ 𝑦𝑖

𝑇 = 𝐿(𝑝0)
𝐿(𝑝𝑎) = 𝑝∑ 𝑦𝑖

0 (1−𝑝0)𝑛−∑ 𝑦𝑖

𝑝∑ 𝑦𝑖𝑎 (1−𝑝𝑎)𝑛−∑ 𝑦𝑖
= ( 𝑝0(1−𝑝𝑎)

𝑝𝑎(1−𝑝0) )∑ 𝑦𝑖( 1−𝑝0
1−𝑝𝑎

)𝑛

ii.

∵𝑇 = ( 𝑝0(1−𝑝𝑎)
𝑝𝑎(1−𝑝0) )∑ 𝑦𝑖( 1−𝑝0

1−𝑝𝑎
)𝑛 < 𝑘

∴ ln(𝑇 ) = ∑ 𝑦𝑖 ln( 𝑝0(1−𝑝𝑎)
𝑝𝑎(1−𝑝0) ) + 𝑛 ln( 1−𝑝0

1−𝑝𝑎
) < ln(𝑘)

∴ ∑ 𝑦𝑖 > ( ln(𝑘) − 𝑛 ln( 1−𝑝0
1−𝑝𝑎

))( ln( 𝑝0(1−𝑝𝑎)
𝑝𝑎(1−𝑝0) ))

−1
= 𝑘∗

iii.

𝑃𝜃0
(𝑇 < 𝑘𝑎) = 𝑃𝜃0

(∑ 𝑦𝑖 > 𝑘∗)
∴RR is ∑ 𝑦𝑖 > 𝑘∗

b.

𝑃𝜃0
(𝑇 < 𝑘𝑎) = 𝑃𝜃0

(∑ 𝑦𝑖 > 𝑘∗) = 𝛼, ∑ 𝑦𝑖 is binomial distribution with parameters n and 𝑝0

c.

Because 𝑃𝜃0
(∑ 𝑦𝑖 > 𝑘∗) = 𝛼 can solved the value of 𝑘∗, therefore RR not depend on 𝑝𝑎, and it is a uniformly

most powerful (UMP) decision rule.
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a.

∵ max
𝜃∈𝜃0

𝐿(𝜃0) ≤ max
𝜃∈𝜃𝑎

𝐿(𝜃𝑎)

∴𝜆 = 𝐿(𝜃0)
max[𝐿(𝜃0),𝐿(𝜃𝑎)] = 1

max[1,𝐿(𝜃𝑎)/𝐿(𝜃0)]

b.

∵𝜆 = 1
max[1,𝐿(𝜃𝑎)/𝐿(𝜃0)] = min[1, 𝐿(𝜃0)/𝐿(𝜃𝑎)]

if 𝜆 < 𝑘, then 𝐿(𝜃0)/𝐿(𝜃𝑎) should be also smaller than some value k’

if 𝐿(𝜃0)
𝐿(𝜃𝑎) < 𝑘′ ≤= 1
c.

LRT coincides with the test given in the Neyman-Pearson Lemma, namely, LRT is the most powerful test
in this case.

a.

Because for normal distribution
𝑓(𝜇, 𝜎) = 1

𝜎
√

2𝜋 exp(−(𝑥 − 𝜇)2

2𝜎2 )
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∴𝐿(𝜇1, 𝜇2, 𝜇3, 𝜎2
1, 𝜎2

2, 𝜎2
3) =

𝑛1

∏
𝑖=1

𝑓(𝜇1, 𝜎1)
𝑛2

∏
𝑖=1

𝑓(𝜇2, 𝜎2)
𝑛3

∏
𝑖=1

𝑓(𝜇3, 𝜎3)

= ( 1√
2𝜋 )(𝑛1+𝑛2+𝑛3) 1

𝜎𝑛1
1 𝜎𝑛2

2 𝜎𝑛3
3

exp ( −
∑
𝑛1

(𝑥𝑖 − 𝜇1)2

2𝜎2
1

−
∑
𝑛2

(𝑦𝑖 − 𝜇2)2

2𝜎2
2

−
∑
𝑛3

(𝑤𝑖 − 𝜇3)2

2𝜎2
3

)

= ( 1√
2𝜋 )(𝑛1+𝑛2+𝑛3) 1

𝜎𝑛1
1 𝜎𝑛2

2 𝜎𝑛3
3

exp ( − 𝜎2
1𝑛1

2𝜎2
1

− 𝜎2
2𝑛2

2𝜎2
2

− 𝜎2
3𝑛3

2𝜎2
3

)

ℓ(𝜇1, 𝜇2, 𝜇3, 𝜎2
1, 𝜎2

2, 𝜎2
3) = ln (𝐿(𝜇1, 𝜇2, 𝜇3, 𝜎2

1, 𝜎2
2, 𝜎2

3))

= (𝑛1 + 𝑛2 + 𝑛3) ln( 1√
2𝜋 ) − 𝑛1

2 ln(𝜎2
1) − 𝑛2

2 ln(𝜎2
2) − 𝑛3

2 ln(𝜎2
3)−

∑
𝑛1

(𝑥𝑖 − 𝜇1)2

2𝜎2
1

−
∑
𝑛2

(𝑦𝑖 − 𝜇2)2

2𝜎2
2

−
∑
𝑛3

(𝑤𝑖 − 𝜇3)2

2𝜎2
3

Under 𝐻0 ∶ 𝜎2
1 = 𝜎2

2 = 𝜎2
3

∴𝜕ℓ(𝜇1, 𝜇2, 𝜇3, 𝜎2
1, 𝜎2

2, 𝜎2
3)

𝜕𝜎2 = −𝑛1 + 𝑛2 + 𝑛3
2𝜎2 +

∑
𝑛1

(𝑥𝑖 − 𝜇1)2

2𝜎4
1

+
∑
𝑛2

(𝑦𝑖 − 𝜇2)2

2𝜎4
2

+
∑
𝑛3

(𝑤𝑖 − 𝜇3)2

2𝜎4
3

= 0

∴𝜎2 = (∑
𝑛1

(𝑥𝑖 − 𝜇1)2 + ∑
𝑛2

(𝑦𝑖 − 𝜇2)2 + ∑
𝑛3

(𝑤𝑖 − 𝜇3)2)/(𝑛1 + 𝑛2 + 𝑛3)

Under 𝐻𝑎 ∶ 𝜎2
1, 𝜎2

2, 𝜎2
3 at least one inequality

∴ 𝜕ℓ(𝜇1,𝜇2,𝜇3,𝜎2
1,𝜎2

2,𝜎2
3)

𝜕𝜎2
1

= − 𝑛1
2𝜎2

1
+

∑
𝑛1

(𝑥𝑖−𝜇1)2

2𝜎4
1

= 0

∴𝜎2
1 =

∑
𝑛1

(𝑥𝑖−𝜇1)2

𝑛1
and 𝜎2

2 and 𝜎2
3 are defined similar as 𝜎2

2 =
∑
𝑛2

(𝑦𝑖−𝜇2)2

𝑛2
and 𝜎2

3 =
∑
𝑛3

(𝑦𝑖−𝜇3)2

𝑛3

∴𝑅 =
max
𝐻0

𝐿(𝜎2)
max
𝐻𝑎

𝐿(𝜎2
1,𝜎2

2,𝜎2
3) = 1/(𝜎(𝑛1+𝑛2+𝑛3))

1/(𝜎(𝑛1)
1 𝜎(𝑛2)

2 𝜎(𝑛3)
3 )

= 𝜎(𝑛1)
1 𝜎(𝑛2)

2 𝜎(𝑛3)
3

𝜎(𝑛1+𝑛2+𝑛3)

If 𝑅 < 𝑘𝛼 where the 𝑘𝛼 is chosen to ensure the level of 𝛼, we would reject 𝐻0.

b.

∵ − 2 ln(𝑅) 𝑑→ 𝜒2(𝑑 − 𝑑0 = 3 − 1 = 2), 𝜒2
0.05(2) = 5.99

∴ − 2 ln(𝑅) > 5.99
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